Metamath Proof Explorer


Theorem sge0rern

Description: If the sum of nonnegative extended reals is not +oo then no terms is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0rern.x ( 𝜑𝑋𝑉 )
sge0rern.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
sge0rern.re ( 𝜑 → ( Σ^𝐹 ) ∈ ℝ )
Assertion sge0rern ( 𝜑 → ¬ +∞ ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 sge0rern.x ( 𝜑𝑋𝑉 )
2 sge0rern.f ( 𝜑𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
3 sge0rern.re ( 𝜑 → ( Σ^𝐹 ) ∈ ℝ )
4 1 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋𝑉 )
5 2 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) )
6 simpr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 )
7 4 5 6 sge0pnfval ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) = +∞ )
8 3 adantr ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^𝐹 ) ∈ ℝ )
9 4 5 sge0repnf ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( ( Σ^𝐹 ) ∈ ℝ ↔ ¬ ( Σ^𝐹 ) = +∞ ) )
10 8 9 mpbid ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ¬ ( Σ^𝐹 ) = +∞ )
11 7 10 pm2.65da ( 𝜑 → ¬ +∞ ∈ ran 𝐹 )