Metamath Proof Explorer


Theorem sge0rern

Description: If the sum of nonnegative extended reals is not +oo then no terms is +oo . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0rern.x
|- ( ph -> X e. V )
sge0rern.f
|- ( ph -> F : X --> ( 0 [,] +oo ) )
sge0rern.re
|- ( ph -> ( sum^ ` F ) e. RR )
Assertion sge0rern
|- ( ph -> -. +oo e. ran F )

Proof

Step Hyp Ref Expression
1 sge0rern.x
 |-  ( ph -> X e. V )
2 sge0rern.f
 |-  ( ph -> F : X --> ( 0 [,] +oo ) )
3 sge0rern.re
 |-  ( ph -> ( sum^ ` F ) e. RR )
4 1 adantr
 |-  ( ( ph /\ +oo e. ran F ) -> X e. V )
5 2 adantr
 |-  ( ( ph /\ +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) )
6 simpr
 |-  ( ( ph /\ +oo e. ran F ) -> +oo e. ran F )
7 4 5 6 sge0pnfval
 |-  ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = +oo )
8 3 adantr
 |-  ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) e. RR )
9 4 5 sge0repnf
 |-  ( ( ph /\ +oo e. ran F ) -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) )
10 8 9 mpbid
 |-  ( ( ph /\ +oo e. ran F ) -> -. ( sum^ ` F ) = +oo )
11 7 10 pm2.65da
 |-  ( ph -> -. +oo e. ran F )