| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0rern.x |
|- ( ph -> X e. V ) |
| 2 |
|
sge0rern.f |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 3 |
|
sge0rern.re |
|- ( ph -> ( sum^ ` F ) e. RR ) |
| 4 |
1
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> X e. V ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> F : X --> ( 0 [,] +oo ) ) |
| 6 |
|
simpr |
|- ( ( ph /\ +oo e. ran F ) -> +oo e. ran F ) |
| 7 |
4 5 6
|
sge0pnfval |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) = +oo ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ +oo e. ran F ) -> ( sum^ ` F ) e. RR ) |
| 9 |
4 5
|
sge0repnf |
|- ( ( ph /\ +oo e. ran F ) -> ( ( sum^ ` F ) e. RR <-> -. ( sum^ ` F ) = +oo ) ) |
| 10 |
8 9
|
mpbid |
|- ( ( ph /\ +oo e. ran F ) -> -. ( sum^ ` F ) = +oo ) |
| 11 |
7 10
|
pm2.65da |
|- ( ph -> -. +oo e. ran F ) |