Step |
Hyp |
Ref |
Expression |
1 |
|
sge0supre.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
sge0supre.f |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
sge0supre.re |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) ∈ ℝ ) |
4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝑋 ∈ 𝑉 ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → +∞ ∈ ran 𝐹 ) |
7 |
4 5 6
|
sge0pnfval |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ( Σ^ ‘ 𝐹 ) = +∞ ) |
8 |
1 2
|
sge0repnf |
⊢ ( 𝜑 → ( ( Σ^ ‘ 𝐹 ) ∈ ℝ ↔ ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) ) |
9 |
3 8
|
mpbid |
⊢ ( 𝜑 → ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ +∞ ∈ ran 𝐹 ) → ¬ ( Σ^ ‘ 𝐹 ) = +∞ ) |
11 |
7 10
|
pm2.65da |
⊢ ( 𝜑 → ¬ +∞ ∈ ran 𝐹 ) |
12 |
2 11
|
fge0iccico |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,) +∞ ) ) |
13 |
1 12
|
sge0reval |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
14 |
12
|
sge0rnre |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
15 |
|
sge0rnn0 |
⊢ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ |
16 |
15
|
a1i |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
19 |
18
|
elrnmpt |
⊢ ( 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → ( 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
17 20
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
22 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) |
23 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
24 |
23
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
25 |
14 24
|
sstrd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ) |
27 |
|
id |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
28 |
|
sumex |
⊢ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ V |
29 |
28
|
a1i |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ V ) |
30 |
18
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ V ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
31 |
27 29 30
|
syl2anc |
⊢ ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) |
33 |
|
supxrub |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ* ∧ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
34 |
26 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) ) |
35 |
13
|
eqcomd |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = ( Σ^ ‘ 𝐹 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = ( Σ^ ‘ 𝐹 ) ) |
37 |
34 36
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( Σ^ ‘ 𝐹 ) ) |
38 |
37
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ≤ ( Σ^ ‘ 𝐹 ) ) |
39 |
22 38
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) |
40 |
39
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) → ( 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) ) ) |
41 |
40
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → ( ∃ 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) 𝑤 = Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) ) |
43 |
21 42
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ) → 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) |
44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) |
45 |
|
brralrspcev |
⊢ ( ( ( Σ^ ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ ( Σ^ ‘ 𝐹 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ 𝑧 ) |
46 |
3 44 45
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ 𝑧 ) |
47 |
|
supxrre |
⊢ ( ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ∧ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) 𝑤 ≤ 𝑧 ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ , < ) ) |
48 |
14 16 46 47
|
syl3anc |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ* , < ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ , < ) ) |
49 |
13 48
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ 𝐹 ) = sup ( ran ( 𝑥 ∈ ( 𝒫 𝑋 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 𝐹 ‘ 𝑦 ) ) , ℝ , < ) ) |