Step |
Hyp |
Ref |
Expression |
1 |
|
sge0sup.x |
|
2 |
|
sge0sup.f |
|
3 |
|
eqidd |
|
4 |
1
|
adantr |
|
5 |
2
|
adantr |
|
6 |
|
simpr |
|
7 |
4 5 6
|
sge0pnfval |
|
8 |
|
vex |
|
9 |
8
|
a1i |
|
10 |
2
|
adantr |
|
11 |
|
elinel1 |
|
12 |
|
elpwi |
|
13 |
11 12
|
syl |
|
14 |
13
|
adantl |
|
15 |
10 14
|
fssresd |
|
16 |
9 15
|
sge0xrcl |
|
17 |
16
|
adantlr |
|
18 |
17
|
ralrimiva |
|
19 |
|
eqid |
|
20 |
19
|
rnmptss |
|
21 |
18 20
|
syl |
|
22 |
2
|
ffnd |
|
23 |
|
fvelrnb |
|
24 |
22 23
|
syl |
|
25 |
24
|
adantr |
|
26 |
6 25
|
mpbid |
|
27 |
|
snelpwi |
|
28 |
|
snfi |
|
29 |
28
|
a1i |
|
30 |
27 29
|
elind |
|
31 |
30
|
3ad2ant2 |
|
32 |
|
simp2 |
|
33 |
2
|
3ad2ant1 |
|
34 |
32
|
snssd |
|
35 |
33 34
|
fssresd |
|
36 |
32 35
|
sge0sn |
|
37 |
|
vsnid |
|
38 |
|
fvres |
|
39 |
37 38
|
ax-mp |
|
40 |
39
|
a1i |
|
41 |
|
simp3 |
|
42 |
36 40 41
|
3eqtrrd |
|
43 |
|
reseq2 |
|
44 |
43
|
fveq2d |
|
45 |
44
|
rspceeqv |
|
46 |
31 42 45
|
syl2anc |
|
47 |
|
pnfex |
|
48 |
47
|
a1i |
|
49 |
19 46 48
|
elrnmptd |
|
50 |
49
|
3exp |
|
51 |
50
|
rexlimdv |
|
52 |
51
|
adantr |
|
53 |
26 52
|
mpd |
|
54 |
|
supxrpnf |
|
55 |
21 53 54
|
syl2anc |
|
56 |
3 7 55
|
3eqtr4d |
|
57 |
1
|
adantr |
|
58 |
2
|
adantr |
|
59 |
|
simpr |
|
60 |
58 59
|
fge0iccico |
|
61 |
57 60
|
sge0reval |
|
62 |
|
elinel2 |
|
63 |
62
|
adantl |
|
64 |
15
|
adantlr |
|
65 |
|
nelrnres |
|
66 |
65
|
ad2antlr |
|
67 |
64 66
|
fge0iccico |
|
68 |
63 67
|
sge0fsum |
|
69 |
|
simpr |
|
70 |
|
fvres |
|
71 |
69 70
|
syl |
|
72 |
71
|
sumeq2dv |
|
73 |
72
|
adantl |
|
74 |
68 73
|
eqtrd |
|
75 |
74
|
mpteq2dva |
|
76 |
75
|
rneqd |
|
77 |
76
|
supeq1d |
|
78 |
61 77
|
eqtr4d |
|
79 |
56 78
|
pm2.61dan |
|