| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sge0sup.x |
|
| 2 |
|
sge0sup.f |
|
| 3 |
|
eqidd |
|
| 4 |
1
|
adantr |
|
| 5 |
2
|
adantr |
|
| 6 |
|
simpr |
|
| 7 |
4 5 6
|
sge0pnfval |
|
| 8 |
|
vex |
|
| 9 |
8
|
a1i |
|
| 10 |
2
|
adantr |
|
| 11 |
|
elinel1 |
|
| 12 |
|
elpwi |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
adantl |
|
| 15 |
10 14
|
fssresd |
|
| 16 |
9 15
|
sge0xrcl |
|
| 17 |
16
|
adantlr |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
|
eqid |
|
| 20 |
19
|
rnmptss |
|
| 21 |
18 20
|
syl |
|
| 22 |
2
|
ffnd |
|
| 23 |
|
fvelrnb |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
adantr |
|
| 26 |
6 25
|
mpbid |
|
| 27 |
|
snelpwi |
|
| 28 |
|
snfi |
|
| 29 |
28
|
a1i |
|
| 30 |
27 29
|
elind |
|
| 31 |
30
|
3ad2ant2 |
|
| 32 |
|
simp2 |
|
| 33 |
2
|
3ad2ant1 |
|
| 34 |
32
|
snssd |
|
| 35 |
33 34
|
fssresd |
|
| 36 |
32 35
|
sge0sn |
|
| 37 |
|
vsnid |
|
| 38 |
|
fvres |
|
| 39 |
37 38
|
ax-mp |
|
| 40 |
39
|
a1i |
|
| 41 |
|
simp3 |
|
| 42 |
36 40 41
|
3eqtrrd |
|
| 43 |
|
reseq2 |
|
| 44 |
43
|
fveq2d |
|
| 45 |
44
|
rspceeqv |
|
| 46 |
31 42 45
|
syl2anc |
|
| 47 |
|
pnfex |
|
| 48 |
47
|
a1i |
|
| 49 |
19 46 48
|
elrnmptd |
|
| 50 |
49
|
3exp |
|
| 51 |
50
|
rexlimdv |
|
| 52 |
51
|
adantr |
|
| 53 |
26 52
|
mpd |
|
| 54 |
|
supxrpnf |
|
| 55 |
21 53 54
|
syl2anc |
|
| 56 |
3 7 55
|
3eqtr4d |
|
| 57 |
1
|
adantr |
|
| 58 |
2
|
adantr |
|
| 59 |
|
simpr |
|
| 60 |
58 59
|
fge0iccico |
|
| 61 |
57 60
|
sge0reval |
|
| 62 |
|
elinel2 |
|
| 63 |
62
|
adantl |
|
| 64 |
15
|
adantlr |
|
| 65 |
|
nelrnres |
|
| 66 |
65
|
ad2antlr |
|
| 67 |
64 66
|
fge0iccico |
|
| 68 |
63 67
|
sge0fsum |
|
| 69 |
|
simpr |
|
| 70 |
|
fvres |
|
| 71 |
69 70
|
syl |
|
| 72 |
71
|
sumeq2dv |
|
| 73 |
72
|
adantl |
|
| 74 |
68 73
|
eqtrd |
|
| 75 |
74
|
mpteq2dva |
|
| 76 |
75
|
rneqd |
|
| 77 |
76
|
supeq1d |
|
| 78 |
61 77
|
eqtr4d |
|
| 79 |
56 78
|
pm2.61dan |
|