| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumge0.1 |
|
| 2 |
|
fsumge0.2 |
|
| 3 |
|
fsumge0.3 |
|
| 4 |
|
fsumless.4 |
|
| 5 |
|
difss |
|
| 6 |
|
ssfi |
|
| 7 |
1 5 6
|
sylancl |
|
| 8 |
|
eldifi |
|
| 9 |
8 2
|
sylan2 |
|
| 10 |
8 3
|
sylan2 |
|
| 11 |
7 9 10
|
fsumge0 |
|
| 12 |
1 4
|
ssfid |
|
| 13 |
4
|
sselda |
|
| 14 |
13 2
|
syldan |
|
| 15 |
12 14
|
fsumrecl |
|
| 16 |
7 9
|
fsumrecl |
|
| 17 |
15 16
|
addge01d |
|
| 18 |
11 17
|
mpbid |
|
| 19 |
|
disjdif |
|
| 20 |
19
|
a1i |
|
| 21 |
|
undif |
|
| 22 |
4 21
|
sylib |
|
| 23 |
22
|
eqcomd |
|
| 24 |
2
|
recnd |
|
| 25 |
20 23 1 24
|
fsumsplit |
|
| 26 |
18 25
|
breqtrrd |
|