Metamath Proof Explorer


Theorem fsumge1

Description: A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 4-Jun-2014)

Ref Expression
Hypotheses fsumge0.1 φAFin
fsumge0.2 φkAB
fsumge0.3 φkA0B
fsumge1.4 k=MB=C
fsumge1.5 φMA
Assertion fsumge1 φCkAB

Proof

Step Hyp Ref Expression
1 fsumge0.1 φAFin
2 fsumge0.2 φkAB
3 fsumge0.3 φkA0B
4 fsumge1.4 k=MB=C
5 fsumge1.5 φMA
6 4 eleq1d k=MBC
7 2 recnd φkAB
8 7 ralrimiva φkAB
9 6 8 5 rspcdva φC
10 4 sumsn MACkMB=C
11 5 9 10 syl2anc φkMB=C
12 5 snssd φMA
13 1 2 3 12 fsumless φkMBkAB
14 11 13 eqbrtrrd φCkAB