Metamath Proof Explorer


Theorem notnotrd

Description: Deduction associated with notnotr and notnotri . Double negation elimination rule. A translation of the natural deduction rule -. -. C , _G |- -. -. ps => _G |- ps ; see natded . This is Definition NNC in Pfenning p. 17. This rule is valid in classical logic (our logic), but not in intuitionistic logic. (Contributed by DAW, 8-Feb-2017)

Ref Expression
Hypothesis notnotrd.1
|- ( ph -> -. -. ps )
Assertion notnotrd
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 notnotrd.1
 |-  ( ph -> -. -. ps )
2 notnotr
 |-  ( -. -. ps -> ps )
3 1 2 syl
 |-  ( ph -> ps )