| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumf1of.1 |  |-  F/ k ph | 
						
							| 2 |  | fsumf1of.2 |  |-  F/ n ph | 
						
							| 3 |  | fsumf1of.3 |  |-  ( k = G -> B = D ) | 
						
							| 4 |  | fsumf1of.4 |  |-  ( ph -> C e. Fin ) | 
						
							| 5 |  | fsumf1of.5 |  |-  ( ph -> F : C -1-1-onto-> A ) | 
						
							| 6 |  | fsumf1of.6 |  |-  ( ( ph /\ n e. C ) -> ( F ` n ) = G ) | 
						
							| 7 |  | fsumf1of.7 |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 8 |  | csbeq1a |  |-  ( k = i -> B = [_ i / k ]_ B ) | 
						
							| 9 |  | nfcv |  |-  F/_ i B | 
						
							| 10 |  | nfcsb1v |  |-  F/_ k [_ i / k ]_ B | 
						
							| 11 | 8 9 10 | cbvsum |  |-  sum_ k e. A B = sum_ i e. A [_ i / k ]_ B | 
						
							| 12 | 11 | a1i |  |-  ( ph -> sum_ k e. A B = sum_ i e. A [_ i / k ]_ B ) | 
						
							| 13 |  | nfv |  |-  F/ k i = [_ j / n ]_ G | 
						
							| 14 |  | nfcv |  |-  F/_ k [_ j / n ]_ D | 
						
							| 15 | 10 14 | nfeq |  |-  F/ k [_ i / k ]_ B = [_ j / n ]_ D | 
						
							| 16 | 13 15 | nfim |  |-  F/ k ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) | 
						
							| 17 |  | eqeq1 |  |-  ( k = i -> ( k = [_ j / n ]_ G <-> i = [_ j / n ]_ G ) ) | 
						
							| 18 | 8 | eqeq1d |  |-  ( k = i -> ( B = [_ j / n ]_ D <-> [_ i / k ]_ B = [_ j / n ]_ D ) ) | 
						
							| 19 | 17 18 | imbi12d |  |-  ( k = i -> ( ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) <-> ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) ) ) | 
						
							| 20 |  | nfcv |  |-  F/_ n k | 
						
							| 21 |  | nfcsb1v |  |-  F/_ n [_ j / n ]_ G | 
						
							| 22 | 20 21 | nfeq |  |-  F/ n k = [_ j / n ]_ G | 
						
							| 23 |  | nfcv |  |-  F/_ n B | 
						
							| 24 |  | nfcsb1v |  |-  F/_ n [_ j / n ]_ D | 
						
							| 25 | 23 24 | nfeq |  |-  F/ n B = [_ j / n ]_ D | 
						
							| 26 | 22 25 | nfim |  |-  F/ n ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) | 
						
							| 27 |  | csbeq1a |  |-  ( n = j -> G = [_ j / n ]_ G ) | 
						
							| 28 | 27 | eqeq2d |  |-  ( n = j -> ( k = G <-> k = [_ j / n ]_ G ) ) | 
						
							| 29 |  | csbeq1a |  |-  ( n = j -> D = [_ j / n ]_ D ) | 
						
							| 30 | 29 | eqeq2d |  |-  ( n = j -> ( B = D <-> B = [_ j / n ]_ D ) ) | 
						
							| 31 | 28 30 | imbi12d |  |-  ( n = j -> ( ( k = G -> B = D ) <-> ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) ) ) | 
						
							| 32 | 26 31 3 | chvarfv |  |-  ( k = [_ j / n ]_ G -> B = [_ j / n ]_ D ) | 
						
							| 33 | 16 19 32 | chvarfv |  |-  ( i = [_ j / n ]_ G -> [_ i / k ]_ B = [_ j / n ]_ D ) | 
						
							| 34 |  | nfv |  |-  F/ n j e. C | 
						
							| 35 | 2 34 | nfan |  |-  F/ n ( ph /\ j e. C ) | 
						
							| 36 |  | nfcv |  |-  F/_ n ( F ` j ) | 
						
							| 37 | 36 21 | nfeq |  |-  F/ n ( F ` j ) = [_ j / n ]_ G | 
						
							| 38 | 35 37 | nfim |  |-  F/ n ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) | 
						
							| 39 |  | eleq1w |  |-  ( n = j -> ( n e. C <-> j e. C ) ) | 
						
							| 40 | 39 | anbi2d |  |-  ( n = j -> ( ( ph /\ n e. C ) <-> ( ph /\ j e. C ) ) ) | 
						
							| 41 |  | fveq2 |  |-  ( n = j -> ( F ` n ) = ( F ` j ) ) | 
						
							| 42 | 41 27 | eqeq12d |  |-  ( n = j -> ( ( F ` n ) = G <-> ( F ` j ) = [_ j / n ]_ G ) ) | 
						
							| 43 | 40 42 | imbi12d |  |-  ( n = j -> ( ( ( ph /\ n e. C ) -> ( F ` n ) = G ) <-> ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) ) ) | 
						
							| 44 | 38 43 6 | chvarfv |  |-  ( ( ph /\ j e. C ) -> ( F ` j ) = [_ j / n ]_ G ) | 
						
							| 45 |  | nfv |  |-  F/ k i e. A | 
						
							| 46 | 1 45 | nfan |  |-  F/ k ( ph /\ i e. A ) | 
						
							| 47 | 10 | nfel1 |  |-  F/ k [_ i / k ]_ B e. CC | 
						
							| 48 | 46 47 | nfim |  |-  F/ k ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) | 
						
							| 49 |  | eleq1w |  |-  ( k = i -> ( k e. A <-> i e. A ) ) | 
						
							| 50 | 49 | anbi2d |  |-  ( k = i -> ( ( ph /\ k e. A ) <-> ( ph /\ i e. A ) ) ) | 
						
							| 51 | 8 | eleq1d |  |-  ( k = i -> ( B e. CC <-> [_ i / k ]_ B e. CC ) ) | 
						
							| 52 | 50 51 | imbi12d |  |-  ( k = i -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) ) ) | 
						
							| 53 | 48 52 7 | chvarfv |  |-  ( ( ph /\ i e. A ) -> [_ i / k ]_ B e. CC ) | 
						
							| 54 | 33 4 5 44 53 | fsumf1o |  |-  ( ph -> sum_ i e. A [_ i / k ]_ B = sum_ j e. C [_ j / n ]_ D ) | 
						
							| 55 |  | nfcv |  |-  F/_ j D | 
						
							| 56 | 29 55 24 | cbvsum |  |-  sum_ n e. C D = sum_ j e. C [_ j / n ]_ D | 
						
							| 57 | 56 | eqcomi |  |-  sum_ j e. C [_ j / n ]_ D = sum_ n e. C D | 
						
							| 58 | 57 | a1i |  |-  ( ph -> sum_ j e. C [_ j / n ]_ D = sum_ n e. C D ) | 
						
							| 59 | 12 54 58 | 3eqtrd |  |-  ( ph -> sum_ k e. A B = sum_ n e. C D ) |