Step |
Hyp |
Ref |
Expression |
1 |
|
ssel2 |
|- ( ( A C_ RR* /\ B e. A ) -> B e. RR* ) |
2 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
3 |
2
|
adantr |
|- ( ( A C_ RR* /\ B e. A ) -> sup ( A , RR* , < ) e. RR* ) |
4 |
|
xrltso |
|- < Or RR* |
5 |
4
|
a1i |
|- ( A C_ RR* -> < Or RR* ) |
6 |
|
xrsupss |
|- ( A C_ RR* -> E. x e. RR* ( A. y e. A -. x < y /\ A. y e. RR* ( y < x -> E. z e. A y < z ) ) ) |
7 |
5 6
|
supub |
|- ( A C_ RR* -> ( B e. A -> -. sup ( A , RR* , < ) < B ) ) |
8 |
7
|
imp |
|- ( ( A C_ RR* /\ B e. A ) -> -. sup ( A , RR* , < ) < B ) |
9 |
1 3 8
|
xrnltled |
|- ( ( A C_ RR* /\ B e. A ) -> B <_ sup ( A , RR* , < ) ) |