Description: Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shincl.1 | |- A e. SH |
|
shincl.2 | |- B e. SH |
||
shless.1 | |- C e. SH |
||
Assertion | shlessi | |- ( A C_ B -> ( A +H C ) C_ ( B +H C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | |- A e. SH |
|
2 | shincl.2 | |- B e. SH |
|
3 | shless.1 | |- C e. SH |
|
4 | shless | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A +H C ) C_ ( B +H C ) ) |
|
5 | 4 | ex | |- ( ( A e. SH /\ B e. SH /\ C e. SH ) -> ( A C_ B -> ( A +H C ) C_ ( B +H C ) ) ) |
6 | 1 2 3 5 | mp3an | |- ( A C_ B -> ( A +H C ) C_ ( B +H C ) ) |