Metamath Proof Explorer


Theorem shlessi

Description: Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1
|- A e. SH
shincl.2
|- B e. SH
shless.1
|- C e. SH
Assertion shlessi
|- ( A C_ B -> ( A +H C ) C_ ( B +H C ) )

Proof

Step Hyp Ref Expression
1 shincl.1
 |-  A e. SH
2 shincl.2
 |-  B e. SH
3 shless.1
 |-  C e. SH
4 shless
 |-  ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A +H C ) C_ ( B +H C ) )
5 4 ex
 |-  ( ( A e. SH /\ B e. SH /\ C e. SH ) -> ( A C_ B -> ( A +H C ) C_ ( B +H C ) ) )
6 1 2 3 5 mp3an
 |-  ( A C_ B -> ( A +H C ) C_ ( B +H C ) )