Metamath Proof Explorer


Theorem shlessi

Description: Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 AS
shincl.2 BS
shless.1 CS
Assertion shlessi ABA+CB+C

Proof

Step Hyp Ref Expression
1 shincl.1 AS
2 shincl.2 BS
3 shless.1 CS
4 shless ASBSCSABA+CB+C
5 4 ex ASBSCSABA+CB+C
6 1 2 3 5 mp3an ABA+CB+C