Metamath Proof Explorer


Theorem shless

Description: Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion shless ASBSCSABA+CB+C

Proof

Step Hyp Ref Expression
1 ssrexv AByAzCx=y+zyBzCx=y+z
2 1 adantl ASBSCSAByAzCx=y+zyBzCx=y+z
3 simpl1 ASBSCSABAS
4 simpl3 ASBSCSABCS
5 shsel ASCSxA+CyAzCx=y+z
6 3 4 5 syl2anc ASBSCSABxA+CyAzCx=y+z
7 simpl2 ASBSCSABBS
8 shsel BSCSxB+CyBzCx=y+z
9 7 4 8 syl2anc ASBSCSABxB+CyBzCx=y+z
10 2 6 9 3imtr4d ASBSCSABxA+CxB+C
11 10 ssrdv ASBSCSABA+CB+C