Metamath Proof Explorer


Theorem shless

Description: Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion shless A S B S C S A B A + C B + C

Proof

Step Hyp Ref Expression
1 ssrexv A B y A z C x = y + z y B z C x = y + z
2 1 adantl A S B S C S A B y A z C x = y + z y B z C x = y + z
3 simpl1 A S B S C S A B A S
4 simpl3 A S B S C S A B C S
5 shsel A S C S x A + C y A z C x = y + z
6 3 4 5 syl2anc A S B S C S A B x A + C y A z C x = y + z
7 simpl2 A S B S C S A B B S
8 shsel B S C S x B + C y B z C x = y + z
9 7 4 8 syl2anc A S B S C S A B x B + C y B z C x = y + z
10 2 6 9 3imtr4d A S B S C S A B x A + C x B + C
11 10 ssrdv A S B S C S A B A + C B + C