Metamath Proof Explorer


Theorem shless

Description: Subset implies subset of subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion shless ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 + 𝐶 ) ⊆ ( 𝐵 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssrexv ( 𝐴𝐵 → ( ∃ 𝑦𝐴𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) → ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) ) )
2 1 adantl ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( ∃ 𝑦𝐴𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) → ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) ) )
3 simpl1 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐴S )
4 simpl3 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐶S )
5 shsel ( ( 𝐴S𝐶S ) → ( 𝑥 ∈ ( 𝐴 + 𝐶 ) ↔ ∃ 𝑦𝐴𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) ) )
6 3 4 5 syl2anc ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝑥 ∈ ( 𝐴 + 𝐶 ) ↔ ∃ 𝑦𝐴𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) ) )
7 simpl2 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐵S )
8 shsel ( ( 𝐵S𝐶S ) → ( 𝑥 ∈ ( 𝐵 + 𝐶 ) ↔ ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) ) )
9 7 4 8 syl2anc ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝑥 ∈ ( 𝐵 + 𝐶 ) ↔ ∃ 𝑦𝐵𝑧𝐶 𝑥 = ( 𝑦 + 𝑧 ) ) )
10 2 6 9 3imtr4d ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝑥 ∈ ( 𝐴 + 𝐶 ) → 𝑥 ∈ ( 𝐵 + 𝐶 ) ) )
11 10 ssrdv ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 + 𝐶 ) ⊆ ( 𝐵 + 𝐶 ) )