Metamath Proof Explorer


Theorem shlej1

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion shlej1 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐴𝐵 )
2 unss1 ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
3 simpl1 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐴S )
4 shss ( 𝐴S𝐴 ⊆ ℋ )
5 3 4 syl ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐴 ⊆ ℋ )
6 simpl3 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐶S )
7 shss ( 𝐶S𝐶 ⊆ ℋ )
8 6 7 syl ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐶 ⊆ ℋ )
9 5 8 unssd ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴𝐶 ) ⊆ ℋ )
10 simpl2 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐵S )
11 shss ( 𝐵S𝐵 ⊆ ℋ )
12 10 11 syl ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → 𝐵 ⊆ ℋ )
13 12 8 unssd ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐵𝐶 ) ⊆ ℋ )
14 occon2 ( ( ( 𝐴𝐶 ) ⊆ ℋ ∧ ( 𝐵𝐶 ) ⊆ ℋ ) → ( ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐶 ) ) ) ) )
15 9 13 14 syl2anc ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐶 ) ) ) ) )
16 2 15 syl5 ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴𝐵 → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐶 ) ) ) ) )
17 1 16 mpd ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐶 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐶 ) ) ) )
18 shjval ( ( 𝐴S𝐶S ) → ( 𝐴 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐶 ) ) ) )
19 3 6 18 syl2anc ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴𝐶 ) ) ) )
20 shjval ( ( 𝐵S𝐶S ) → ( 𝐵 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐶 ) ) ) )
21 10 6 20 syl2anc ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐵 𝐶 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐵𝐶 ) ) ) )
22 17 19 21 3sstr4d ( ( ( 𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵 ) → ( 𝐴 𝐶 ) ⊆ ( 𝐵 𝐶 ) )