Description: Members of a subspace and its complement are orthogonal. (Contributed by NM, 10-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shocorth | |- ( H e. SH -> ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A .ih B ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss | |- ( H e. SH -> H C_ ~H ) |
|
| 2 | ocorth | |- ( H C_ ~H -> ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A .ih B ) = 0 ) ) |
|
| 3 | 1 2 | syl | |- ( H e. SH -> ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A .ih B ) = 0 ) ) |