Metamath Proof Explorer


Theorem simp2lr

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp2lr
|- ( ( th /\ ( ( ph /\ ps ) /\ ch ) /\ ta ) -> ps )

Proof

Step Hyp Ref Expression
1 simplr
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ps )
2 1 3ad2ant2
 |-  ( ( th /\ ( ( ph /\ ps ) /\ ch ) /\ ta ) -> ps )