Metamath Proof Explorer


Theorem simp2lr

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012)

Ref Expression
Assertion simp2lr ( ( 𝜃 ∧ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜏 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜓 )
2 1 3ad2ant2 ( ( 𝜃 ∧ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ∧ 𝜏 ) → 𝜓 )