Metamath Proof Explorer


Theorem simprim

Description: Simplification. Similar to Theorem *3.27 (Simp) of WhiteheadRussell p. 112. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 13-Nov-2012)

Ref Expression
Assertion simprim
|- ( -. ( ph -> -. ps ) -> ps )

Proof

Step Hyp Ref Expression
1 idd
 |-  ( ph -> ( ps -> ps ) )
2 1 impi
 |-  ( -. ( ph -> -. ps ) -> ps )