Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces on the complex numbers. (Contributed by Thierry Arnoux, 24-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sitgval.b | |- B = ( Base ` W ) | |
| sitgval.j | |- J = ( TopOpen ` W ) | ||
| sitgval.s | |- S = ( sigaGen ` J ) | ||
| sitgval.0 | |- .0. = ( 0g ` W ) | ||
| sitgval.x | |- .x. = ( .s ` W ) | ||
| sitgval.h | |- H = ( RRHom ` ( Scalar ` W ) ) | ||
| sitgval.1 | |- ( ph -> W e. V ) | ||
| sitgval.2 | |- ( ph -> M e. U. ran measures ) | ||
| sibfmbl.1 | |- ( ph -> F e. dom ( W sitg M ) ) | ||
| sitgclcn.1 | |- ( ph -> W e. Ban ) | ||
| sitgclcn.2 | |- ( ph -> ( Scalar ` W ) = CCfld ) | ||
| Assertion | sitgclcn | |- ( ph -> ( ( W sitg M ) ` F ) e. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sitgval.b | |- B = ( Base ` W ) | |
| 2 | sitgval.j | |- J = ( TopOpen ` W ) | |
| 3 | sitgval.s | |- S = ( sigaGen ` J ) | |
| 4 | sitgval.0 | |- .0. = ( 0g ` W ) | |
| 5 | sitgval.x | |- .x. = ( .s ` W ) | |
| 6 | sitgval.h | |- H = ( RRHom ` ( Scalar ` W ) ) | |
| 7 | sitgval.1 | |- ( ph -> W e. V ) | |
| 8 | sitgval.2 | |- ( ph -> M e. U. ran measures ) | |
| 9 | sibfmbl.1 | |- ( ph -> F e. dom ( W sitg M ) ) | |
| 10 | sitgclcn.1 | |- ( ph -> W e. Ban ) | |
| 11 | sitgclcn.2 | |- ( ph -> ( Scalar ` W ) = CCfld ) | |
| 12 | cnrrext | |- CCfld e. RRExt | |
| 13 | 11 12 | eqeltrdi | |- ( ph -> ( Scalar ` W ) e. RRExt ) | 
| 14 | 1 2 3 4 5 6 7 8 9 10 13 | sitgclbn | |- ( ph -> ( ( W sitg M ) ` F ) e. B ) |