| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnnrg |  |-  CCfld e. NrmRing | 
						
							| 2 |  | cndrng |  |-  CCfld e. DivRing | 
						
							| 3 | 1 2 | pm3.2i |  |-  ( CCfld e. NrmRing /\ CCfld e. DivRing ) | 
						
							| 4 |  | cnzh |  |-  ( ZMod ` CCfld ) e. NrmMod | 
						
							| 5 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 6 | 5 | fveq2i |  |-  ( chr ` RRfld ) = ( chr ` ( CCfld |`s RR ) ) | 
						
							| 7 |  | reofld |  |-  RRfld e. oField | 
						
							| 8 |  | ofldchr |  |-  ( RRfld e. oField -> ( chr ` RRfld ) = 0 ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( chr ` RRfld ) = 0 | 
						
							| 10 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 11 | 10 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 12 |  | subrgchr |  |-  ( RR e. ( SubRing ` CCfld ) -> ( chr ` ( CCfld |`s RR ) ) = ( chr ` CCfld ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( chr ` ( CCfld |`s RR ) ) = ( chr ` CCfld ) | 
						
							| 14 | 6 9 13 | 3eqtr3ri |  |-  ( chr ` CCfld ) = 0 | 
						
							| 15 | 4 14 | pm3.2i |  |-  ( ( ZMod ` CCfld ) e. NrmMod /\ ( chr ` CCfld ) = 0 ) | 
						
							| 16 |  | cnfldcusp |  |-  CCfld e. CUnifSp | 
						
							| 17 |  | eqid |  |-  ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) | 
						
							| 18 | 17 | cnflduss |  |-  ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) | 
						
							| 19 | 16 18 | pm3.2i |  |-  ( CCfld e. CUnifSp /\ ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) ) | 
						
							| 20 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 21 |  | cnmet |  |-  ( abs o. - ) e. ( Met ` CC ) | 
						
							| 22 |  | metf |  |-  ( ( abs o. - ) e. ( Met ` CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 23 |  | ffn |  |-  ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) | 
						
							| 24 | 21 22 23 | mp2b |  |-  ( abs o. - ) Fn ( CC X. CC ) | 
						
							| 25 |  | fnresdm |  |-  ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) | 
						
							| 26 | 24 25 | ax-mp |  |-  ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) | 
						
							| 27 |  | cnfldds |  |-  ( abs o. - ) = ( dist ` CCfld ) | 
						
							| 28 | 27 | reseq1i |  |-  ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) | 
						
							| 29 | 26 28 | eqtr3i |  |-  ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) | 
						
							| 30 |  | eqid |  |-  ( ZMod ` CCfld ) = ( ZMod ` CCfld ) | 
						
							| 31 | 20 29 30 | isrrext |  |-  ( CCfld e. RRExt <-> ( ( CCfld e. NrmRing /\ CCfld e. DivRing ) /\ ( ( ZMod ` CCfld ) e. NrmMod /\ ( chr ` CCfld ) = 0 ) /\ ( CCfld e. CUnifSp /\ ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) ) ) ) | 
						
							| 32 | 3 15 19 31 | mpbir3an |  |-  CCfld e. RRExt |