Step |
Hyp |
Ref |
Expression |
1 |
|
cnnrg |
|- CCfld e. NrmRing |
2 |
|
cndrng |
|- CCfld e. DivRing |
3 |
1 2
|
pm3.2i |
|- ( CCfld e. NrmRing /\ CCfld e. DivRing ) |
4 |
|
cnzh |
|- ( ZMod ` CCfld ) e. NrmMod |
5 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
6 |
5
|
fveq2i |
|- ( chr ` RRfld ) = ( chr ` ( CCfld |`s RR ) ) |
7 |
|
reofld |
|- RRfld e. oField |
8 |
|
ofldchr |
|- ( RRfld e. oField -> ( chr ` RRfld ) = 0 ) |
9 |
7 8
|
ax-mp |
|- ( chr ` RRfld ) = 0 |
10 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
11 |
10
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
12 |
|
subrgchr |
|- ( RR e. ( SubRing ` CCfld ) -> ( chr ` ( CCfld |`s RR ) ) = ( chr ` CCfld ) ) |
13 |
11 12
|
ax-mp |
|- ( chr ` ( CCfld |`s RR ) ) = ( chr ` CCfld ) |
14 |
6 9 13
|
3eqtr3ri |
|- ( chr ` CCfld ) = 0 |
15 |
4 14
|
pm3.2i |
|- ( ( ZMod ` CCfld ) e. NrmMod /\ ( chr ` CCfld ) = 0 ) |
16 |
|
cnfldcusp |
|- CCfld e. CUnifSp |
17 |
|
eqid |
|- ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) |
18 |
17
|
cnflduss |
|- ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) |
19 |
16 18
|
pm3.2i |
|- ( CCfld e. CUnifSp /\ ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) ) |
20 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
21 |
|
cnmet |
|- ( abs o. - ) e. ( Met ` CC ) |
22 |
|
metf |
|- ( ( abs o. - ) e. ( Met ` CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
23 |
|
ffn |
|- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
24 |
21 22 23
|
mp2b |
|- ( abs o. - ) Fn ( CC X. CC ) |
25 |
|
fnresdm |
|- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
26 |
24 25
|
ax-mp |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
27 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
28 |
27
|
reseq1i |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
29 |
26 28
|
eqtr3i |
|- ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
30 |
|
eqid |
|- ( ZMod ` CCfld ) = ( ZMod ` CCfld ) |
31 |
20 29 30
|
isrrext |
|- ( CCfld e. RRExt <-> ( ( CCfld e. NrmRing /\ CCfld e. DivRing ) /\ ( ( ZMod ` CCfld ) e. NrmMod /\ ( chr ` CCfld ) = 0 ) /\ ( CCfld e. CUnifSp /\ ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) ) ) ) |
32 |
3 15 19 31
|
mpbir3an |
|- CCfld e. RRExt |