Metamath Proof Explorer


Theorem cnrrext

Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion cnrrext fld ℝExt

Proof

Step Hyp Ref Expression
1 cnnrg fld NrmRing
2 cndrng fld DivRing
3 1 2 pm3.2i fld NrmRing fld DivRing
4 cnzh ℤMod fld NrmMod
5 df-refld fld = fld 𝑠
6 5 fveq2i chr fld = chr fld 𝑠
7 reofld fld oField
8 ofldchr fld oField chr fld = 0
9 7 8 ax-mp chr fld = 0
10 resubdrg SubRing fld fld DivRing
11 10 simpli SubRing fld
12 subrgchr SubRing fld chr fld 𝑠 = chr fld
13 11 12 ax-mp chr fld 𝑠 = chr fld
14 6 9 13 3eqtr3ri chr fld = 0
15 4 14 pm3.2i ℤMod fld NrmMod chr fld = 0
16 cnfldcusp fld CUnifSp
17 eqid UnifSt fld = UnifSt fld
18 17 cnflduss UnifSt fld = metUnif abs
19 16 18 pm3.2i fld CUnifSp UnifSt fld = metUnif abs
20 cnfldbas = Base fld
21 cnmet abs Met
22 metf abs Met abs : ×
23 ffn abs : × abs Fn ×
24 21 22 23 mp2b abs Fn ×
25 fnresdm abs Fn × abs × = abs
26 24 25 ax-mp abs × = abs
27 cnfldds abs = dist fld
28 27 reseq1i abs × = dist fld ×
29 26 28 eqtr3i abs = dist fld ×
30 eqid ℤMod fld = ℤMod fld
31 20 29 30 isrrext fld ℝExt fld NrmRing fld DivRing ℤMod fld NrmMod chr fld = 0 fld CUnifSp UnifSt fld = metUnif abs
32 3 15 19 31 mpbir3an fld ℝExt