Metamath Proof Explorer


Theorem cnfldcusp

Description: The field of complex numbers is a complete uniform space. (Contributed by Thierry Arnoux, 17-Dec-2017)

Ref Expression
Assertion cnfldcusp fldCUnifSp

Proof

Step Hyp Ref Expression
1 0cn 0
2 1 ne0ii
3 cncms fldCMetSp
4 eqid UnifStfld=UnifStfld
5 4 cnflduss UnifStfld=metUnifabs
6 cnfldbas =Basefld
7 absf abs:
8 subf :×
9 fco abs::×abs:×
10 7 8 9 mp2an abs:×
11 ffn abs:×absFn×
12 fnresdm absFn×abs×=abs
13 10 11 12 mp2b abs×=abs
14 cnfldds abs=distfld
15 14 reseq1i abs×=distfld×
16 13 15 eqtr3i abs=distfld×
17 6 16 4 cmetcusp1 fldCMetSpUnifStfld=metUnifabsfldCUnifSp
18 2 3 5 17 mp3an fldCUnifSp