Metamath Proof Explorer


Theorem subrgchr

Description: If A is a subring of R , then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018)

Ref Expression
Assertion subrgchr A SubRing R chr R 𝑠 A = chr R

Proof

Step Hyp Ref Expression
1 subrgsubg A SubRing R A SubGrp R
2 eqid 1 R = 1 R
3 2 subrg1cl A SubRing R 1 R A
4 eqid R 𝑠 A = R 𝑠 A
5 eqid od R = od R
6 eqid od R 𝑠 A = od R 𝑠 A
7 4 5 6 subgod A SubGrp R 1 R A od R 1 R = od R 𝑠 A 1 R
8 1 3 7 syl2anc A SubRing R od R 1 R = od R 𝑠 A 1 R
9 4 2 subrg1 A SubRing R 1 R = 1 R 𝑠 A
10 9 fveq2d A SubRing R od R 𝑠 A 1 R = od R 𝑠 A 1 R 𝑠 A
11 8 10 eqtr2d A SubRing R od R 𝑠 A 1 R 𝑠 A = od R 1 R
12 eqid 1 R 𝑠 A = 1 R 𝑠 A
13 eqid chr R 𝑠 A = chr R 𝑠 A
14 6 12 13 chrval od R 𝑠 A 1 R 𝑠 A = chr R 𝑠 A
15 eqid chr R = chr R
16 5 2 15 chrval od R 1 R = chr R
17 11 14 16 3eqtr3g A SubRing R chr R 𝑠 A = chr R