Metamath Proof Explorer


Theorem subrgchr

Description: If A is a subring of R , then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018)

Ref Expression
Assertion subrgchr ASubRingRchrR𝑠A=chrR

Proof

Step Hyp Ref Expression
1 subrgsubg ASubRingRASubGrpR
2 eqid 1R=1R
3 2 subrg1cl ASubRingR1RA
4 eqid R𝑠A=R𝑠A
5 eqid odR=odR
6 eqid odR𝑠A=odR𝑠A
7 4 5 6 subgod ASubGrpR1RAodR1R=odR𝑠A1R
8 1 3 7 syl2anc ASubRingRodR1R=odR𝑠A1R
9 4 2 subrg1 ASubRingR1R=1R𝑠A
10 9 fveq2d ASubRingRodR𝑠A1R=odR𝑠A1R𝑠A
11 8 10 eqtr2d ASubRingRodR𝑠A1R𝑠A=odR1R
12 eqid 1R𝑠A=1R𝑠A
13 eqid chrR𝑠A=chrR𝑠A
14 6 12 13 chrval odR𝑠A1R𝑠A=chrR𝑠A
15 eqid chrR=chrR
16 5 2 15 chrval odR1R=chrR
17 11 14 16 3eqtr3g ASubRingRchrR𝑠A=chrR