| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgsubg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 2 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 3 |
2
|
subrg1cl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐴 ) |
| 4 |
|
eqid |
⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) |
| 5 |
|
eqid |
⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( od ‘ ( 𝑅 ↾s 𝐴 ) ) = ( od ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 7 |
4 5 6
|
subgod |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐴 ) → ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( od ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 8 |
1 3 7
|
syl2anc |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( od ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 9 |
4 2
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( od ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ ( 1r ‘ 𝑅 ) ) = ( ( od ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝐴 ) ) ) ) |
| 11 |
8 10
|
eqtr2d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( od ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝐴 ) ) ) = ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ ( 𝑅 ↾s 𝐴 ) ) = ( 1r ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 13 |
|
eqid |
⊢ ( chr ‘ ( 𝑅 ↾s 𝐴 ) ) = ( chr ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 14 |
6 12 13
|
chrval |
⊢ ( ( od ‘ ( 𝑅 ↾s 𝐴 ) ) ‘ ( 1r ‘ ( 𝑅 ↾s 𝐴 ) ) ) = ( chr ‘ ( 𝑅 ↾s 𝐴 ) ) |
| 15 |
|
eqid |
⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) |
| 16 |
5 2 15
|
chrval |
⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( chr ‘ 𝑅 ) |
| 17 |
11 14 16
|
3eqtr3g |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( chr ‘ ( 𝑅 ↾s 𝐴 ) ) = ( chr ‘ 𝑅 ) ) |