| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgsubg |
|- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |
| 2 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 3 |
2
|
subrg1cl |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. A ) |
| 4 |
|
eqid |
|- ( R |`s A ) = ( R |`s A ) |
| 5 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
| 6 |
|
eqid |
|- ( od ` ( R |`s A ) ) = ( od ` ( R |`s A ) ) |
| 7 |
4 5 6
|
subgod |
|- ( ( A e. ( SubGrp ` R ) /\ ( 1r ` R ) e. A ) -> ( ( od ` R ) ` ( 1r ` R ) ) = ( ( od ` ( R |`s A ) ) ` ( 1r ` R ) ) ) |
| 8 |
1 3 7
|
syl2anc |
|- ( A e. ( SubRing ` R ) -> ( ( od ` R ) ` ( 1r ` R ) ) = ( ( od ` ( R |`s A ) ) ` ( 1r ` R ) ) ) |
| 9 |
4 2
|
subrg1 |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` ( R |`s A ) ) ) |
| 10 |
9
|
fveq2d |
|- ( A e. ( SubRing ` R ) -> ( ( od ` ( R |`s A ) ) ` ( 1r ` R ) ) = ( ( od ` ( R |`s A ) ) ` ( 1r ` ( R |`s A ) ) ) ) |
| 11 |
8 10
|
eqtr2d |
|- ( A e. ( SubRing ` R ) -> ( ( od ` ( R |`s A ) ) ` ( 1r ` ( R |`s A ) ) ) = ( ( od ` R ) ` ( 1r ` R ) ) ) |
| 12 |
|
eqid |
|- ( 1r ` ( R |`s A ) ) = ( 1r ` ( R |`s A ) ) |
| 13 |
|
eqid |
|- ( chr ` ( R |`s A ) ) = ( chr ` ( R |`s A ) ) |
| 14 |
6 12 13
|
chrval |
|- ( ( od ` ( R |`s A ) ) ` ( 1r ` ( R |`s A ) ) ) = ( chr ` ( R |`s A ) ) |
| 15 |
|
eqid |
|- ( chr ` R ) = ( chr ` R ) |
| 16 |
5 2 15
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = ( chr ` R ) |
| 17 |
11 14 16
|
3eqtr3g |
|- ( A e. ( SubRing ` R ) -> ( chr ` ( R |`s A ) ) = ( chr ` R ) ) |