| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rmfsuppf2.r |
|- R = ( Base ` M ) |
| 2 |
|
rmfsupp2.m |
|- ( ph -> M e. Ring ) |
| 3 |
|
rmfsupp2.v |
|- ( ph -> V e. X ) |
| 4 |
|
rmfsupp2.c |
|- ( ( ph /\ v e. V ) -> C e. R ) |
| 5 |
|
rmfsupp2.a |
|- ( ph -> A : V --> R ) |
| 6 |
|
rmfsupp2.1 |
|- ( ph -> A finSupp ( 0g ` M ) ) |
| 7 |
|
funmpt |
|- Fun ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) |
| 8 |
7
|
a1i |
|- ( ph -> Fun ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ) |
| 9 |
3
|
mptexd |
|- ( ph -> ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) e. _V ) |
| 10 |
|
ringgrp |
|- ( M e. Ring -> M e. Grp ) |
| 11 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
| 12 |
1 11
|
grpidcl |
|- ( M e. Grp -> ( 0g ` M ) e. R ) |
| 13 |
2 10 12
|
3syl |
|- ( ph -> ( 0g ` M ) e. R ) |
| 14 |
|
suppval1 |
|- ( ( Fun ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) /\ ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) e. _V /\ ( 0g ` M ) e. R ) -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) supp ( 0g ` M ) ) = { u e. dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) | ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) =/= ( 0g ` M ) } ) |
| 15 |
8 9 13 14
|
syl3anc |
|- ( ph -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) supp ( 0g ` M ) ) = { u e. dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) | ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) =/= ( 0g ` M ) } ) |
| 16 |
|
ovex |
|- ( ( A ` v ) ( .r ` M ) C ) e. _V |
| 17 |
|
eqid |
|- ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) = ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) |
| 18 |
16 17
|
dmmpti |
|- dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) = V |
| 19 |
18
|
a1i |
|- ( ph -> dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) = V ) |
| 20 |
|
ovex |
|- ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) e. _V |
| 21 |
|
nfcv |
|- F/_ v u |
| 22 |
|
nfcv |
|- F/_ v ( A ` u ) |
| 23 |
|
nfcv |
|- F/_ v ( .r ` M ) |
| 24 |
|
nfcsb1v |
|- F/_ v [_ u / v ]_ C |
| 25 |
22 23 24
|
nfov |
|- F/_ v ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) |
| 26 |
|
fveq2 |
|- ( v = u -> ( A ` v ) = ( A ` u ) ) |
| 27 |
|
csbeq1a |
|- ( v = u -> C = [_ u / v ]_ C ) |
| 28 |
26 27
|
oveq12d |
|- ( v = u -> ( ( A ` v ) ( .r ` M ) C ) = ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) ) |
| 29 |
21 25 28 17
|
fvmptf |
|- ( ( u e. V /\ ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) e. _V ) -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) = ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) ) |
| 30 |
20 29
|
mpan2 |
|- ( u e. V -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) = ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) ) |
| 31 |
30 18
|
eleq2s |
|- ( u e. dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) = ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ u e. dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ) -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) = ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) ) |
| 33 |
32
|
neeq1d |
|- ( ( ph /\ u e. dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ) -> ( ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) =/= ( 0g ` M ) <-> ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) =/= ( 0g ` M ) ) ) |
| 34 |
19 33
|
rabeqbidva |
|- ( ph -> { u e. dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) | ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) =/= ( 0g ` M ) } = { u e. V | ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) =/= ( 0g ` M ) } ) |
| 35 |
5
|
fdmd |
|- ( ph -> dom A = V ) |
| 36 |
35
|
rabeqdv |
|- ( ph -> { u e. dom A | ( A ` u ) =/= ( 0g ` M ) } = { u e. V | ( A ` u ) =/= ( 0g ` M ) } ) |
| 37 |
5
|
ffund |
|- ( ph -> Fun A ) |
| 38 |
1
|
fvexi |
|- R e. _V |
| 39 |
38
|
a1i |
|- ( ph -> R e. _V ) |
| 40 |
39 3
|
elmapd |
|- ( ph -> ( A e. ( R ^m V ) <-> A : V --> R ) ) |
| 41 |
5 40
|
mpbird |
|- ( ph -> A e. ( R ^m V ) ) |
| 42 |
|
suppval1 |
|- ( ( Fun A /\ A e. ( R ^m V ) /\ ( 0g ` M ) e. R ) -> ( A supp ( 0g ` M ) ) = { u e. dom A | ( A ` u ) =/= ( 0g ` M ) } ) |
| 43 |
37 41 13 42
|
syl3anc |
|- ( ph -> ( A supp ( 0g ` M ) ) = { u e. dom A | ( A ` u ) =/= ( 0g ` M ) } ) |
| 44 |
6
|
fsuppimpd |
|- ( ph -> ( A supp ( 0g ` M ) ) e. Fin ) |
| 45 |
43 44
|
eqeltrrd |
|- ( ph -> { u e. dom A | ( A ` u ) =/= ( 0g ` M ) } e. Fin ) |
| 46 |
36 45
|
eqeltrrd |
|- ( ph -> { u e. V | ( A ` u ) =/= ( 0g ` M ) } e. Fin ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> ( A ` u ) = ( 0g ` M ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) = ( ( 0g ` M ) ( .r ` M ) [_ u / v ]_ C ) ) |
| 49 |
2
|
ad2antrr |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> M e. Ring ) |
| 50 |
|
simplr |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> u e. V ) |
| 51 |
4
|
ralrimiva |
|- ( ph -> A. v e. V C e. R ) |
| 52 |
51
|
ad2antrr |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> A. v e. V C e. R ) |
| 53 |
|
rspcsbela |
|- ( ( u e. V /\ A. v e. V C e. R ) -> [_ u / v ]_ C e. R ) |
| 54 |
50 52 53
|
syl2anc |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> [_ u / v ]_ C e. R ) |
| 55 |
|
eqid |
|- ( .r ` M ) = ( .r ` M ) |
| 56 |
1 55 11
|
ringlz |
|- ( ( M e. Ring /\ [_ u / v ]_ C e. R ) -> ( ( 0g ` M ) ( .r ` M ) [_ u / v ]_ C ) = ( 0g ` M ) ) |
| 57 |
49 54 56
|
syl2anc |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> ( ( 0g ` M ) ( .r ` M ) [_ u / v ]_ C ) = ( 0g ` M ) ) |
| 58 |
48 57
|
eqtrd |
|- ( ( ( ph /\ u e. V ) /\ ( A ` u ) = ( 0g ` M ) ) -> ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) = ( 0g ` M ) ) |
| 59 |
58
|
ex |
|- ( ( ph /\ u e. V ) -> ( ( A ` u ) = ( 0g ` M ) -> ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) = ( 0g ` M ) ) ) |
| 60 |
59
|
necon3d |
|- ( ( ph /\ u e. V ) -> ( ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) =/= ( 0g ` M ) -> ( A ` u ) =/= ( 0g ` M ) ) ) |
| 61 |
60
|
ss2rabdv |
|- ( ph -> { u e. V | ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) =/= ( 0g ` M ) } C_ { u e. V | ( A ` u ) =/= ( 0g ` M ) } ) |
| 62 |
|
ssfi |
|- ( ( { u e. V | ( A ` u ) =/= ( 0g ` M ) } e. Fin /\ { u e. V | ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) =/= ( 0g ` M ) } C_ { u e. V | ( A ` u ) =/= ( 0g ` M ) } ) -> { u e. V | ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) =/= ( 0g ` M ) } e. Fin ) |
| 63 |
46 61 62
|
syl2anc |
|- ( ph -> { u e. V | ( ( A ` u ) ( .r ` M ) [_ u / v ]_ C ) =/= ( 0g ` M ) } e. Fin ) |
| 64 |
34 63
|
eqeltrd |
|- ( ph -> { u e. dom ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) | ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) ` u ) =/= ( 0g ` M ) } e. Fin ) |
| 65 |
15 64
|
eqeltrd |
|- ( ph -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) supp ( 0g ` M ) ) e. Fin ) |
| 66 |
|
isfsupp |
|- ( ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) e. _V /\ ( 0g ` M ) e. R ) -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) finSupp ( 0g ` M ) <-> ( Fun ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) /\ ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) supp ( 0g ` M ) ) e. Fin ) ) ) |
| 67 |
9 13 66
|
syl2anc |
|- ( ph -> ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) finSupp ( 0g ` M ) <-> ( Fun ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) /\ ( ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) supp ( 0g ` M ) ) e. Fin ) ) ) |
| 68 |
8 65 67
|
mpbir2and |
|- ( ph -> ( v e. V |-> ( ( A ` v ) ( .r ` M ) C ) ) finSupp ( 0g ` M ) ) |