Step |
Hyp |
Ref |
Expression |
1 |
|
cnnrg |
⊢ ℂfld ∈ NrmRing |
2 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
3 |
1 2
|
pm3.2i |
⊢ ( ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing ) |
4 |
|
cnzh |
⊢ ( ℤMod ‘ ℂfld ) ∈ NrmMod |
5 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
6 |
5
|
fveq2i |
⊢ ( chr ‘ ℝfld ) = ( chr ‘ ( ℂfld ↾s ℝ ) ) |
7 |
|
reofld |
⊢ ℝfld ∈ oField |
8 |
|
ofldchr |
⊢ ( ℝfld ∈ oField → ( chr ‘ ℝfld ) = 0 ) |
9 |
7 8
|
ax-mp |
⊢ ( chr ‘ ℝfld ) = 0 |
10 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
11 |
10
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
12 |
|
subrgchr |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ( chr ‘ ( ℂfld ↾s ℝ ) ) = ( chr ‘ ℂfld ) ) |
13 |
11 12
|
ax-mp |
⊢ ( chr ‘ ( ℂfld ↾s ℝ ) ) = ( chr ‘ ℂfld ) |
14 |
6 9 13
|
3eqtr3ri |
⊢ ( chr ‘ ℂfld ) = 0 |
15 |
4 14
|
pm3.2i |
⊢ ( ( ℤMod ‘ ℂfld ) ∈ NrmMod ∧ ( chr ‘ ℂfld ) = 0 ) |
16 |
|
cnfldcusp |
⊢ ℂfld ∈ CUnifSp |
17 |
|
eqid |
⊢ ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld ) |
18 |
17
|
cnflduss |
⊢ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) |
19 |
16 18
|
pm3.2i |
⊢ ( ℂfld ∈ CUnifSp ∧ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) ) |
20 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
21 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
22 |
|
metf |
⊢ ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
23 |
|
ffn |
⊢ ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) ) |
24 |
21 22 23
|
mp2b |
⊢ ( abs ∘ − ) Fn ( ℂ × ℂ ) |
25 |
|
fnresdm |
⊢ ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) ) |
26 |
24 25
|
ax-mp |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) |
27 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
28 |
27
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
29 |
26 28
|
eqtr3i |
⊢ ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) ) |
30 |
|
eqid |
⊢ ( ℤMod ‘ ℂfld ) = ( ℤMod ‘ ℂfld ) |
31 |
20 29 30
|
isrrext |
⊢ ( ℂfld ∈ ℝExt ↔ ( ( ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing ) ∧ ( ( ℤMod ‘ ℂfld ) ∈ NrmMod ∧ ( chr ‘ ℂfld ) = 0 ) ∧ ( ℂfld ∈ CUnifSp ∧ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) ) ) ) |
32 |
3 15 19 31
|
mpbir3an |
⊢ ℂfld ∈ ℝExt |