| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnnrg | ⊢ ℂfld  ∈  NrmRing | 
						
							| 2 |  | cndrng | ⊢ ℂfld  ∈  DivRing | 
						
							| 3 | 1 2 | pm3.2i | ⊢ ( ℂfld  ∈  NrmRing  ∧  ℂfld  ∈  DivRing ) | 
						
							| 4 |  | cnzh | ⊢ ( ℤMod ‘ ℂfld )  ∈  NrmMod | 
						
							| 5 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 6 | 5 | fveq2i | ⊢ ( chr ‘ ℝfld )  =  ( chr ‘ ( ℂfld  ↾s  ℝ ) ) | 
						
							| 7 |  | reofld | ⊢ ℝfld  ∈  oField | 
						
							| 8 |  | ofldchr | ⊢ ( ℝfld  ∈  oField  →  ( chr ‘ ℝfld )  =  0 ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( chr ‘ ℝfld )  =  0 | 
						
							| 10 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 11 | 10 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 12 |  | subrgchr | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  →  ( chr ‘ ( ℂfld  ↾s  ℝ ) )  =  ( chr ‘ ℂfld ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( chr ‘ ( ℂfld  ↾s  ℝ ) )  =  ( chr ‘ ℂfld ) | 
						
							| 14 | 6 9 13 | 3eqtr3ri | ⊢ ( chr ‘ ℂfld )  =  0 | 
						
							| 15 | 4 14 | pm3.2i | ⊢ ( ( ℤMod ‘ ℂfld )  ∈  NrmMod  ∧  ( chr ‘ ℂfld )  =  0 ) | 
						
							| 16 |  | cnfldcusp | ⊢ ℂfld  ∈  CUnifSp | 
						
							| 17 |  | eqid | ⊢ ( UnifSt ‘ ℂfld )  =  ( UnifSt ‘ ℂfld ) | 
						
							| 18 | 17 | cnflduss | ⊢ ( UnifSt ‘ ℂfld )  =  ( metUnif ‘ ( abs  ∘   −  ) ) | 
						
							| 19 | 16 18 | pm3.2i | ⊢ ( ℂfld  ∈  CUnifSp  ∧  ( UnifSt ‘ ℂfld )  =  ( metUnif ‘ ( abs  ∘   −  ) ) ) | 
						
							| 20 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 21 |  | cnmet | ⊢ ( abs  ∘   −  )  ∈  ( Met ‘ ℂ ) | 
						
							| 22 |  | metf | ⊢ ( ( abs  ∘   −  )  ∈  ( Met ‘ ℂ )  →  ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ ) | 
						
							| 23 |  | ffn | ⊢ ( ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ  →  ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ ) ) | 
						
							| 24 | 21 22 23 | mp2b | ⊢ ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ ) | 
						
							| 25 |  | fnresdm | ⊢ ( ( abs  ∘   −  )  Fn  ( ℂ  ×  ℂ )  →  ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) ) | 
						
							| 26 | 24 25 | ax-mp | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( abs  ∘   −  ) | 
						
							| 27 |  | cnfldds | ⊢ ( abs  ∘   −  )  =  ( dist ‘ ℂfld ) | 
						
							| 28 | 27 | reseq1i | ⊢ ( ( abs  ∘   −  )  ↾  ( ℂ  ×  ℂ ) )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 29 | 26 28 | eqtr3i | ⊢ ( abs  ∘   −  )  =  ( ( dist ‘ ℂfld )  ↾  ( ℂ  ×  ℂ ) ) | 
						
							| 30 |  | eqid | ⊢ ( ℤMod ‘ ℂfld )  =  ( ℤMod ‘ ℂfld ) | 
						
							| 31 | 20 29 30 | isrrext | ⊢ ( ℂfld  ∈   ℝExt   ↔  ( ( ℂfld  ∈  NrmRing  ∧  ℂfld  ∈  DivRing )  ∧  ( ( ℤMod ‘ ℂfld )  ∈  NrmMod  ∧  ( chr ‘ ℂfld )  =  0 )  ∧  ( ℂfld  ∈  CUnifSp  ∧  ( UnifSt ‘ ℂfld )  =  ( metUnif ‘ ( abs  ∘   −  ) ) ) ) ) | 
						
							| 32 | 3 15 19 31 | mpbir3an | ⊢ ℂfld  ∈   ℝExt |