Metamath Proof Explorer


Theorem cnrrext

Description: The field of the complex numbers is an extension of the real numbers. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Assertion cnrrext fld ∈ ℝExt

Proof

Step Hyp Ref Expression
1 cnnrg fld ∈ NrmRing
2 cndrng fld ∈ DivRing
3 1 2 pm3.2i ( ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing )
4 cnzh ( ℤMod ‘ ℂfld ) ∈ NrmMod
5 df-refld fld = ( ℂflds ℝ )
6 5 fveq2i ( chr ‘ ℝfld ) = ( chr ‘ ( ℂflds ℝ ) )
7 reofld fld ∈ oField
8 ofldchr ( ℝfld ∈ oField → ( chr ‘ ℝfld ) = 0 )
9 7 8 ax-mp ( chr ‘ ℝfld ) = 0
10 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
11 10 simpli ℝ ∈ ( SubRing ‘ ℂfld )
12 subrgchr ( ℝ ∈ ( SubRing ‘ ℂfld ) → ( chr ‘ ( ℂflds ℝ ) ) = ( chr ‘ ℂfld ) )
13 11 12 ax-mp ( chr ‘ ( ℂflds ℝ ) ) = ( chr ‘ ℂfld )
14 6 9 13 3eqtr3ri ( chr ‘ ℂfld ) = 0
15 4 14 pm3.2i ( ( ℤMod ‘ ℂfld ) ∈ NrmMod ∧ ( chr ‘ ℂfld ) = 0 )
16 cnfldcusp fld ∈ CUnifSp
17 eqid ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld )
18 17 cnflduss ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) )
19 16 18 pm3.2i ( ℂfld ∈ CUnifSp ∧ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) )
20 cnfldbas ℂ = ( Base ‘ ℂfld )
21 cnmet ( abs ∘ − ) ∈ ( Met ‘ ℂ )
22 metf ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ )
23 ffn ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ → ( abs ∘ − ) Fn ( ℂ × ℂ ) )
24 21 22 23 mp2b ( abs ∘ − ) Fn ( ℂ × ℂ )
25 fnresdm ( ( abs ∘ − ) Fn ( ℂ × ℂ ) → ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − ) )
26 24 25 ax-mp ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( abs ∘ − )
27 cnfldds ( abs ∘ − ) = ( dist ‘ ℂfld )
28 27 reseq1i ( ( abs ∘ − ) ↾ ( ℂ × ℂ ) ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) )
29 26 28 eqtr3i ( abs ∘ − ) = ( ( dist ‘ ℂfld ) ↾ ( ℂ × ℂ ) )
30 eqid ( ℤMod ‘ ℂfld ) = ( ℤMod ‘ ℂfld )
31 20 29 30 isrrext ( ℂfld ∈ ℝExt ↔ ( ( ℂfld ∈ NrmRing ∧ ℂfld ∈ DivRing ) ∧ ( ( ℤMod ‘ ℂfld ) ∈ NrmMod ∧ ( chr ‘ ℂfld ) = 0 ) ∧ ( ℂfld ∈ CUnifSp ∧ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) ) ) )
32 3 15 19 31 mpbir3an fld ∈ ℝExt