Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( od ‘ 𝐹 ) = ( od ‘ 𝐹 ) |
2 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
3 |
|
eqid |
⊢ ( chr ‘ 𝐹 ) = ( chr ‘ 𝐹 ) |
4 |
1 2 3
|
chrval |
⊢ ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = ( chr ‘ 𝐹 ) |
5 |
|
ofldfld |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) |
6 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
7 |
6
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
8 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
9 |
5 7 8
|
3syl |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Ring ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
11 |
10 2
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
12 |
|
eqid |
⊢ ( .g ‘ 𝐹 ) = ( .g ‘ 𝐹 ) |
13 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
14 |
|
eqid |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } |
15 |
10 12 13 1 14
|
odval |
⊢ ( ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) ) |
16 |
9 11 15
|
3syl |
⊢ ( 𝐹 ∈ oField → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
18 |
17
|
breq2d |
⊢ ( 𝑛 = 1 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
21 |
20
|
breq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
24 |
23
|
breq2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
26 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
27 |
26
|
breq2d |
⊢ ( 𝑛 = 𝑦 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
29 |
|
eqid |
⊢ ( lt ‘ 𝐹 ) = ( lt ‘ 𝐹 ) |
30 |
13 2 29
|
ofldlt1 |
⊢ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) |
31 |
9 11
|
syl |
⊢ ( 𝐹 ∈ oField → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
32 |
10 12
|
mulg1 |
⊢ ( ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
33 |
31 32
|
syl |
⊢ ( 𝐹 ∈ oField → ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
34 |
30 33
|
breqtrrd |
⊢ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
35 |
|
ofldtos |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Toset ) |
36 |
|
tospos |
⊢ ( 𝐹 ∈ Toset → 𝐹 ∈ Poset ) |
37 |
35 36
|
syl |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Poset ) |
38 |
37
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Poset ) |
39 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
40 |
9 39
|
syl |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Grp ) |
41 |
40
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Grp ) |
42 |
10 13
|
grpidcl |
⊢ ( 𝐹 ∈ Grp → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
43 |
41 42
|
syl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
44 |
|
grpmnd |
⊢ ( 𝐹 ∈ Grp → 𝐹 ∈ Mnd ) |
45 |
|
mndmgm |
⊢ ( 𝐹 ∈ Mnd → 𝐹 ∈ Mgm ) |
46 |
44 45
|
syl |
⊢ ( 𝐹 ∈ Grp → 𝐹 ∈ Mgm ) |
47 |
41 46
|
syl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Mgm ) |
48 |
|
simpll |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝑚 ∈ ℕ ) |
49 |
31
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
50 |
10 12
|
mulgnncl |
⊢ ( ( 𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
51 |
47 48 49 50
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
52 |
48
|
peano2nnd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
53 |
10 12
|
mulgnncl |
⊢ ( ( 𝐹 ∈ Mgm ∧ ( 𝑚 + 1 ) ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
54 |
47 52 49 53
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
55 |
43 51 54
|
3jca |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) |
56 |
|
simpr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
57 |
|
simplr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ oField ) |
58 |
|
isofld |
⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) |
59 |
58
|
simprbi |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
60 |
|
orngogrp |
⊢ ( 𝐹 ∈ oRing → 𝐹 ∈ oGrp ) |
61 |
57 59 60
|
3syl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ oGrp ) |
62 |
30
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) |
63 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
64 |
10 29 63
|
ogrpaddlt |
⊢ ( ( 𝐹 ∈ oGrp ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ( lt ‘ 𝐹 ) ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
65 |
61 43 49 51 62 64
|
syl131anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ( lt ‘ 𝐹 ) ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
66 |
10 63 13
|
grplid |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) = ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
67 |
41 51 66
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) = ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
68 |
67
|
eqcomd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
69 |
10 12 63
|
mulgnnp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
70 |
48 49 69
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
71 |
|
ringcmn |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ CMnd ) |
72 |
57 9 71
|
3syl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ CMnd ) |
73 |
10 63
|
cmncom |
⊢ ( ( 𝐹 ∈ CMnd ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
74 |
72 51 49 73
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
75 |
70 74
|
eqtrd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
76 |
65 68 75
|
3brtr4d |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
77 |
10 29
|
plttr |
⊢ ( ( 𝐹 ∈ Poset ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
78 |
77
|
imp |
⊢ ( ( ( 𝐹 ∈ Poset ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) ∧ ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
79 |
38 55 56 76 78
|
syl22anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
80 |
79
|
exp31 |
⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ∈ oField → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
81 |
80
|
a2d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
82 |
19 22 25 28 34 81
|
nnind |
⊢ ( 𝑦 ∈ ℕ → ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
83 |
82
|
impcom |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
84 |
|
fvex |
⊢ ( 0g ‘ 𝐹 ) ∈ V |
85 |
|
ovex |
⊢ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ V |
86 |
29
|
pltne |
⊢ ( ( 𝐹 ∈ oField ∧ ( 0g ‘ 𝐹 ) ∈ V ∧ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ V ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
87 |
84 85 86
|
mp3an23 |
⊢ ( 𝐹 ∈ oField → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
89 |
83 88
|
mpd |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
90 |
89
|
necomd |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝐹 ) ) |
91 |
90
|
neneqd |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
92 |
91
|
ralrimiva |
⊢ ( 𝐹 ∈ oField → ∀ 𝑦 ∈ ℕ ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
93 |
|
rabeq0 |
⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ ↔ ∀ 𝑦 ∈ ℕ ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
94 |
92 93
|
sylibr |
⊢ ( 𝐹 ∈ oField → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ ) |
95 |
94
|
iftrued |
⊢ ( 𝐹 ∈ oField → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) = 0 ) |
96 |
16 95
|
eqtrd |
⊢ ( 𝐹 ∈ oField → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = 0 ) |
97 |
4 96
|
eqtr3id |
⊢ ( 𝐹 ∈ oField → ( chr ‘ 𝐹 ) = 0 ) |