| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( od ‘ 𝐹 ) = ( od ‘ 𝐹 ) |
| 2 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 3 |
|
eqid |
⊢ ( chr ‘ 𝐹 ) = ( chr ‘ 𝐹 ) |
| 4 |
1 2 3
|
chrval |
⊢ ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = ( chr ‘ 𝐹 ) |
| 5 |
|
ofldfld |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) |
| 6 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
| 7 |
6
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
| 8 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
| 9 |
5 7 8
|
3syl |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Ring ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 11 |
10 2
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 12 |
|
eqid |
⊢ ( .g ‘ 𝐹 ) = ( .g ‘ 𝐹 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 14 |
|
eqid |
⊢ { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } |
| 15 |
10 12 13 1 14
|
odval |
⊢ ( ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) ) |
| 16 |
9 11 15
|
3syl |
⊢ ( 𝐹 ∈ oField → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 18 |
17
|
breq2d |
⊢ ( 𝑛 = 1 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 21 |
20
|
breq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 24 |
23
|
breq2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 27 |
26
|
breq2d |
⊢ ( 𝑛 = 𝑦 → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ↔ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑛 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ↔ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 29 |
|
eqid |
⊢ ( lt ‘ 𝐹 ) = ( lt ‘ 𝐹 ) |
| 30 |
13 2 29
|
ofldlt1 |
⊢ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) |
| 31 |
9 11
|
syl |
⊢ ( 𝐹 ∈ oField → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 32 |
10 12
|
mulg1 |
⊢ ( ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) → ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝐹 ∈ oField → ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
| 34 |
30 33
|
breqtrrd |
⊢ ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 35 |
|
ofldtos |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Toset ) |
| 36 |
|
tospos |
⊢ ( 𝐹 ∈ Toset → 𝐹 ∈ Poset ) |
| 37 |
35 36
|
syl |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Poset ) |
| 38 |
37
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Poset ) |
| 39 |
9
|
ringgrpd |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Grp ) |
| 40 |
39
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Grp ) |
| 41 |
10 13
|
grpidcl |
⊢ ( 𝐹 ∈ Grp → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 42 |
40 41
|
syl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 43 |
40
|
grpmgmd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ Mgm ) |
| 44 |
|
simpll |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝑚 ∈ ℕ ) |
| 45 |
31
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) |
| 46 |
10 12
|
mulgnncl |
⊢ ( ( 𝐹 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 48 |
44
|
peano2nnd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 49 |
10 12
|
mulgnncl |
⊢ ( ( 𝐹 ∈ Mgm ∧ ( 𝑚 + 1 ) ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 50 |
43 48 45 49
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 51 |
42 47 50
|
3jca |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 52 |
|
simpr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 53 |
|
simplr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ oField ) |
| 54 |
|
isofld |
⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) |
| 55 |
54
|
simprbi |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
| 56 |
|
orngogrp |
⊢ ( 𝐹 ∈ oRing → 𝐹 ∈ oGrp ) |
| 57 |
53 55 56
|
3syl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ oGrp ) |
| 58 |
30
|
ad2antlr |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) |
| 59 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
| 60 |
10 29 59
|
ogrpaddlt |
⊢ ( ( 𝐹 ∈ oGrp ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ( lt ‘ 𝐹 ) ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 61 |
57 42 45 47 58 60
|
syl131anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ( lt ‘ 𝐹 ) ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 62 |
10 59 13 40 47
|
grplidd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) = ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 63 |
62
|
eqcomd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 0g ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 64 |
10 12 59
|
mulgnnp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 65 |
44 45 64
|
syl2anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 66 |
|
ringcmn |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ CMnd ) |
| 67 |
53 9 66
|
3syl |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → 𝐹 ∈ CMnd ) |
| 68 |
10 59
|
cmncom |
⊢ ( ( 𝐹 ∈ CMnd ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 69 |
67 47 45 68
|
syl3anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( +g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 70 |
65 69
|
eqtrd |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ 𝐹 ) ( +g ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 71 |
61 63 70
|
3brtr4d |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 72 |
10 29
|
plttr |
⊢ ( ( 𝐹 ∈ Poset ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 73 |
72
|
imp |
⊢ ( ( ( 𝐹 ∈ Poset ∧ ( ( 0g ‘ 𝐹 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ ( Base ‘ 𝐹 ) ) ) ∧ ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∧ ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 74 |
38 51 52 71 73
|
syl22anc |
⊢ ( ( ( 𝑚 ∈ ℕ ∧ 𝐹 ∈ oField ) ∧ ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 75 |
74
|
exp31 |
⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ∈ oField → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 76 |
75
|
a2d |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑚 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) → ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( ( 𝑚 + 1 ) ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) ) |
| 77 |
19 22 25 28 34 76
|
nnind |
⊢ ( 𝑦 ∈ ℕ → ( 𝐹 ∈ oField → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 78 |
77
|
impcom |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 79 |
|
fvex |
⊢ ( 0g ‘ 𝐹 ) ∈ V |
| 80 |
|
ovex |
⊢ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ V |
| 81 |
29
|
pltne |
⊢ ( ( 𝐹 ∈ oField ∧ ( 0g ‘ 𝐹 ) ∈ V ∧ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ∈ V ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 82 |
79 80 81
|
mp3an23 |
⊢ ( 𝐹 ∈ oField → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( ( 0g ‘ 𝐹 ) ( lt ‘ 𝐹 ) ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) ) |
| 84 |
78 83
|
mpd |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 0g ‘ 𝐹 ) ≠ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ) |
| 85 |
84
|
necomd |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝐹 ) ) |
| 86 |
85
|
neneqd |
⊢ ( ( 𝐹 ∈ oField ∧ 𝑦 ∈ ℕ ) → ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 87 |
86
|
ralrimiva |
⊢ ( 𝐹 ∈ oField → ∀ 𝑦 ∈ ℕ ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 88 |
|
rabeq0 |
⊢ ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ ↔ ∀ 𝑦 ∈ ℕ ¬ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( 𝐹 ∈ oField → { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ ) |
| 90 |
89
|
iftrued |
⊢ ( 𝐹 ∈ oField → if ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } = ∅ , 0 , inf ( { 𝑦 ∈ ℕ ∣ ( 𝑦 ( .g ‘ 𝐹 ) ( 1r ‘ 𝐹 ) ) = ( 0g ‘ 𝐹 ) } , ℝ , < ) ) = 0 ) |
| 91 |
16 90
|
eqtrd |
⊢ ( 𝐹 ∈ oField → ( ( od ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) = 0 ) |
| 92 |
4 91
|
eqtr3id |
⊢ ( 𝐹 ∈ oField → ( chr ‘ 𝐹 ) = 0 ) |