Description: An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ofldfld | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld | ⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) | |
2 | 1 | simplbi | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) |