Description: An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ofldfld | |- ( F e. oField -> F e. Field ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld | |- ( F e. oField <-> ( F e. Field /\ F e. oRing ) ) |
|
2 | 1 | simplbi | |- ( F e. oField -> F e. Field ) |