Description: An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofldfld | |- ( F e. oField -> F e. Field ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofld | |- ( F e. oField <-> ( F e. Field /\ F e. oRing ) ) |
|
| 2 | 1 | simplbi | |- ( F e. oField -> F e. Field ) |