Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ofldtos | |- ( F e. oField -> F e. Toset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld | |- ( F e. oField <-> ( F e. Field /\ F e. oRing ) ) |
|
2 | 1 | simprbi | |- ( F e. oField -> F e. oRing ) |
3 | orngogrp | |- ( F e. oRing -> F e. oGrp ) |
|
4 | isogrp | |- ( F e. oGrp <-> ( F e. Grp /\ F e. oMnd ) ) |
|
5 | 4 | simprbi | |- ( F e. oGrp -> F e. oMnd ) |
6 | 2 3 5 | 3syl | |- ( F e. oField -> F e. oMnd ) |
7 | omndtos | |- ( F e. oMnd -> F e. Toset ) |
|
8 | 6 7 | syl | |- ( F e. oField -> F e. Toset ) |