Metamath Proof Explorer


Theorem ofldtos

Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion ofldtos
|- ( F e. oField -> F e. Toset )

Proof

Step Hyp Ref Expression
1 isofld
 |-  ( F e. oField <-> ( F e. Field /\ F e. oRing ) )
2 1 simprbi
 |-  ( F e. oField -> F e. oRing )
3 orngogrp
 |-  ( F e. oRing -> F e. oGrp )
4 isogrp
 |-  ( F e. oGrp <-> ( F e. Grp /\ F e. oMnd ) )
5 4 simprbi
 |-  ( F e. oGrp -> F e. oMnd )
6 2 3 5 3syl
 |-  ( F e. oField -> F e. oMnd )
7 omndtos
 |-  ( F e. oMnd -> F e. Toset )
8 6 7 syl
 |-  ( F e. oField -> F e. Toset )