Metamath Proof Explorer


Theorem ofldtos

Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion ofldtos F oField F Toset

Proof

Step Hyp Ref Expression
1 isofld F oField F Field F oRing
2 1 simprbi F oField F oRing
3 orngogrp F oRing F oGrp
4 isogrp F oGrp F Grp F oMnd
5 4 simprbi F oGrp F oMnd
6 2 3 5 3syl F oField F oMnd
7 omndtos F oMnd F Toset
8 6 7 syl F oField F Toset