Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ofldtos | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Toset ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isofld | ⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) | |
2 | 1 | simprbi | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
3 | orngogrp | ⊢ ( 𝐹 ∈ oRing → 𝐹 ∈ oGrp ) | |
4 | isogrp | ⊢ ( 𝐹 ∈ oGrp ↔ ( 𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd ) ) | |
5 | 4 | simprbi | ⊢ ( 𝐹 ∈ oGrp → 𝐹 ∈ oMnd ) |
6 | 2 3 5 | 3syl | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oMnd ) |
7 | omndtos | ⊢ ( 𝐹 ∈ oMnd → 𝐹 ∈ Toset ) | |
8 | 6 7 | syl | ⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Toset ) |