Metamath Proof Explorer


Theorem ofldtos

Description: An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion ofldtos ( 𝐹 ∈ oField → 𝐹 ∈ Toset )

Proof

Step Hyp Ref Expression
1 isofld ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) )
2 1 simprbi ( 𝐹 ∈ oField → 𝐹 ∈ oRing )
3 orngogrp ( 𝐹 ∈ oRing → 𝐹 ∈ oGrp )
4 isogrp ( 𝐹 ∈ oGrp ↔ ( 𝐹 ∈ Grp ∧ 𝐹 ∈ oMnd ) )
5 4 simprbi ( 𝐹 ∈ oGrp → 𝐹 ∈ oMnd )
6 2 3 5 3syl ( 𝐹 ∈ oField → 𝐹 ∈ oMnd )
7 omndtos ( 𝐹 ∈ oMnd → 𝐹 ∈ Toset )
8 6 7 syl ( 𝐹 ∈ oField → 𝐹 ∈ Toset )