Metamath Proof Explorer


Theorem ogrpaddlt

Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Hypotheses ogrpaddlt.0 𝐵 = ( Base ‘ 𝐺 )
ogrpaddlt.1 < = ( lt ‘ 𝐺 )
ogrpaddlt.2 + = ( +g𝐺 )
Assertion ogrpaddlt ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) )

Proof

Step Hyp Ref Expression
1 ogrpaddlt.0 𝐵 = ( Base ‘ 𝐺 )
2 ogrpaddlt.1 < = ( lt ‘ 𝐺 )
3 ogrpaddlt.2 + = ( +g𝐺 )
4 isogrp ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) )
5 4 simprbi ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd )
6 5 3ad2ant1 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ oMnd )
7 simp2 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) )
8 simp1 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ oGrp )
9 simp21 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋𝐵 )
10 simp22 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑌𝐵 )
11 simp3 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 )
12 eqid ( le ‘ 𝐺 ) = ( le ‘ 𝐺 )
13 12 2 pltle ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌𝑋 ( le ‘ 𝐺 ) 𝑌 ) )
14 13 imp ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝐺 ) 𝑌 )
15 8 9 10 11 14 syl31anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝐺 ) 𝑌 )
16 1 12 3 omndadd ( ( 𝐺 ∈ oMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 ( le ‘ 𝐺 ) 𝑌 ) → ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) )
17 6 7 15 16 syl3anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) )
18 2 pltne ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 < 𝑌𝑋𝑌 ) )
19 18 imp ( ( ( 𝐺 ∈ oGrp ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋𝑌 )
20 8 9 10 11 19 syl31anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋𝑌 )
21 ogrpgrp ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp )
22 1 3 grprcan ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) ↔ 𝑋 = 𝑌 ) )
23 22 biimpd ( ( 𝐺 ∈ Grp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) )
24 21 23 sylan ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 + 𝑍 ) = ( 𝑌 + 𝑍 ) → 𝑋 = 𝑌 ) )
25 24 necon3d ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋𝑌 → ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) )
26 25 3impia ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋𝑌 ) → ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) )
27 8 7 20 26 syl3anc ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) )
28 ovex ( 𝑋 + 𝑍 ) ∈ V
29 ovex ( 𝑌 + 𝑍 ) ∈ V
30 12 2 pltval ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 + 𝑍 ) ∈ V ∧ ( 𝑌 + 𝑍 ) ∈ V ) → ( ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ↔ ( ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ∧ ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) ) )
31 28 29 30 mp3an23 ( 𝐺 ∈ oGrp → ( ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ↔ ( ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ∧ ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) ) )
32 31 3ad2ant1 ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ↔ ( ( 𝑋 + 𝑍 ) ( le ‘ 𝐺 ) ( 𝑌 + 𝑍 ) ∧ ( 𝑋 + 𝑍 ) ≠ ( 𝑌 + 𝑍 ) ) ) )
33 17 27 32 mpbir2and ( ( 𝐺 ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) )