| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ogrpaddlt.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ogrpaddlt.1 |
⊢ < = ( lt ‘ 𝐺 ) |
| 3 |
|
ogrpaddlt.2 |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
1 2 3
|
ogrpaddlt |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) |
| 5 |
4
|
3expa |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝐺 ∈ oGrp ) |
| 7 |
|
ogrpgrp |
⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) |
| 8 |
6 7
|
syl |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝐺 ∈ Grp ) |
| 9 |
|
simplr1 |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑋 ∈ 𝐵 ) |
| 10 |
|
simplr3 |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑍 ∈ 𝐵 ) |
| 11 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + 𝑍 ) ∈ 𝐵 ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + 𝑍 ) ∈ 𝐵 ) |
| 13 |
|
simplr2 |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑌 ∈ 𝐵 ) |
| 14 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 15 |
8 13 10 14
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 16 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 17 |
1 16
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 18 |
8 10 17
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) |
| 20 |
1 2 3
|
ogrpaddlt |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( ( 𝑋 + 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 + 𝑍 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) < ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 21 |
6 12 15 18 19 20
|
syl131anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) < ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 22 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 23 |
8 9 10 18 22
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 25 |
1 3 24 16
|
grprinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 0g ‘ 𝐺 ) ) |
| 26 |
8 10 25
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 0g ‘ 𝐺 ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
| 28 |
1 3 24
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 29 |
8 9 28
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 30 |
23 27 29
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = 𝑋 ) |
| 31 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 32 |
8 13 10 18 31
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 33 |
26
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑌 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( 𝑌 + ( 0g ‘ 𝐺 ) ) ) |
| 34 |
1 3 24
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 0g ‘ 𝐺 ) ) = 𝑌 ) |
| 35 |
8 13 34
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑌 + ( 0g ‘ 𝐺 ) ) = 𝑌 ) |
| 36 |
32 33 35
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = 𝑌 ) |
| 37 |
21 30 36
|
3brtr3d |
⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑋 < 𝑌 ) |
| 38 |
5 37
|
impbida |
⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) ) |