Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpaddlt.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ogrpaddlt.1 |
⊢ < = ( lt ‘ 𝐺 ) |
3 |
|
ogrpaddlt.2 |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
ogrpaddltrd.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
5 |
|
ogrpaddltrd.2 |
⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ oGrp ) |
6 |
|
ogrpaddltrd.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
ogrpaddltrd.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
ogrpaddltrd.5 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
9 |
|
ogrpaddltrd.6 |
⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
10 |
|
eqid |
⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) |
11 |
10 2
|
oppglt |
⊢ ( 𝐺 ∈ 𝑉 → < = ( lt ‘ ( oppg ‘ 𝐺 ) ) ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → < = ( lt ‘ ( oppg ‘ 𝐺 ) ) ) |
13 |
12
|
breqd |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ 𝑋 ( lt ‘ ( oppg ‘ 𝐺 ) ) 𝑌 ) ) |
14 |
9 13
|
mpbid |
⊢ ( 𝜑 → 𝑋 ( lt ‘ ( oppg ‘ 𝐺 ) ) 𝑌 ) |
15 |
10 1
|
oppgbas |
⊢ 𝐵 = ( Base ‘ ( oppg ‘ 𝐺 ) ) |
16 |
|
eqid |
⊢ ( lt ‘ ( oppg ‘ 𝐺 ) ) = ( lt ‘ ( oppg ‘ 𝐺 ) ) |
17 |
|
eqid |
⊢ ( +g ‘ ( oppg ‘ 𝐺 ) ) = ( +g ‘ ( oppg ‘ 𝐺 ) ) |
18 |
15 16 17
|
ogrpaddlt |
⊢ ( ( ( oppg ‘ 𝐺 ) ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ( lt ‘ ( oppg ‘ 𝐺 ) ) 𝑌 ) → ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ) |
19 |
5 6 7 8 14 18
|
syl131anc |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ) |
20 |
3 10 17
|
oppgplus |
⊢ ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑋 ) |
21 |
3 10 17
|
oppgplus |
⊢ ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑌 ) |
22 |
19 20 21
|
3brtr3g |
⊢ ( 𝜑 → ( 𝑍 + 𝑋 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑍 + 𝑌 ) ) |
23 |
12
|
breqd |
⊢ ( 𝜑 → ( ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ↔ ( 𝑍 + 𝑋 ) ( lt ‘ ( oppg ‘ 𝐺 ) ) ( 𝑍 + 𝑌 ) ) ) |
24 |
22 23
|
mpbird |
⊢ ( 𝜑 → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) |