Metamath Proof Explorer


Theorem ogrpaddltrd

Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpaddlt.0 𝐵 = ( Base ‘ 𝐺 )
ogrpaddlt.1 < = ( lt ‘ 𝐺 )
ogrpaddlt.2 + = ( +g𝐺 )
ogrpaddltrd.1 ( 𝜑𝐺𝑉 )
ogrpaddltrd.2 ( 𝜑 → ( oppg𝐺 ) ∈ oGrp )
ogrpaddltrd.3 ( 𝜑𝑋𝐵 )
ogrpaddltrd.4 ( 𝜑𝑌𝐵 )
ogrpaddltrd.5 ( 𝜑𝑍𝐵 )
ogrpaddltrd.6 ( 𝜑𝑋 < 𝑌 )
Assertion ogrpaddltrd ( 𝜑 → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ogrpaddlt.0 𝐵 = ( Base ‘ 𝐺 )
2 ogrpaddlt.1 < = ( lt ‘ 𝐺 )
3 ogrpaddlt.2 + = ( +g𝐺 )
4 ogrpaddltrd.1 ( 𝜑𝐺𝑉 )
5 ogrpaddltrd.2 ( 𝜑 → ( oppg𝐺 ) ∈ oGrp )
6 ogrpaddltrd.3 ( 𝜑𝑋𝐵 )
7 ogrpaddltrd.4 ( 𝜑𝑌𝐵 )
8 ogrpaddltrd.5 ( 𝜑𝑍𝐵 )
9 ogrpaddltrd.6 ( 𝜑𝑋 < 𝑌 )
10 eqid ( oppg𝐺 ) = ( oppg𝐺 )
11 10 2 oppglt ( 𝐺𝑉< = ( lt ‘ ( oppg𝐺 ) ) )
12 4 11 syl ( 𝜑< = ( lt ‘ ( oppg𝐺 ) ) )
13 12 breqd ( 𝜑 → ( 𝑋 < 𝑌𝑋 ( lt ‘ ( oppg𝐺 ) ) 𝑌 ) )
14 9 13 mpbid ( 𝜑𝑋 ( lt ‘ ( oppg𝐺 ) ) 𝑌 )
15 10 1 oppgbas 𝐵 = ( Base ‘ ( oppg𝐺 ) )
16 eqid ( lt ‘ ( oppg𝐺 ) ) = ( lt ‘ ( oppg𝐺 ) )
17 eqid ( +g ‘ ( oppg𝐺 ) ) = ( +g ‘ ( oppg𝐺 ) )
18 15 16 17 ogrpaddlt ( ( ( oppg𝐺 ) ∈ oGrp ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 ( lt ‘ ( oppg𝐺 ) ) 𝑌 ) → ( 𝑋 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) ( lt ‘ ( oppg𝐺 ) ) ( 𝑌 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) )
19 5 6 7 8 14 18 syl131anc ( 𝜑 → ( 𝑋 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) ( lt ‘ ( oppg𝐺 ) ) ( 𝑌 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) )
20 3 10 17 oppgplus ( 𝑋 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑋 )
21 3 10 17 oppgplus ( 𝑌 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑌 )
22 19 20 21 3brtr3g ( 𝜑 → ( 𝑍 + 𝑋 ) ( lt ‘ ( oppg𝐺 ) ) ( 𝑍 + 𝑌 ) )
23 12 breqd ( 𝜑 → ( ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ↔ ( 𝑍 + 𝑋 ) ( lt ‘ ( oppg𝐺 ) ) ( 𝑍 + 𝑌 ) ) )
24 22 23 mpbird ( 𝜑 → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) )