Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppglt.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
oppglt.2 | ⊢ < = ( lt ‘ 𝑅 ) | ||
Assertion | oppglt | ⊢ ( 𝑅 ∈ 𝑉 → < = ( lt ‘ 𝑂 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppglt.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
2 | oppglt.2 | ⊢ < = ( lt ‘ 𝑅 ) | |
3 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
4 | 3 2 | pltfval | ⊢ ( 𝑅 ∈ 𝑉 → < = ( ( le ‘ 𝑅 ) ∖ I ) ) |
5 | 1 | fvexi | ⊢ 𝑂 ∈ V |
6 | 1 3 | oppgle | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑂 ) |
7 | eqid | ⊢ ( lt ‘ 𝑂 ) = ( lt ‘ 𝑂 ) | |
8 | 6 7 | pltfval | ⊢ ( 𝑂 ∈ V → ( lt ‘ 𝑂 ) = ( ( le ‘ 𝑅 ) ∖ I ) ) |
9 | 5 8 | ax-mp | ⊢ ( lt ‘ 𝑂 ) = ( ( le ‘ 𝑅 ) ∖ I ) |
10 | 4 9 | eqtr4di | ⊢ ( 𝑅 ∈ 𝑉 → < = ( lt ‘ 𝑂 ) ) |