Metamath Proof Explorer


Theorem oppglt

Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses oppglt.1
|- O = ( oppG ` R )
oppglt.2
|- .< = ( lt ` R )
Assertion oppglt
|- ( R e. V -> .< = ( lt ` O ) )

Proof

Step Hyp Ref Expression
1 oppglt.1
 |-  O = ( oppG ` R )
2 oppglt.2
 |-  .< = ( lt ` R )
3 eqid
 |-  ( le ` R ) = ( le ` R )
4 3 2 pltfval
 |-  ( R e. V -> .< = ( ( le ` R ) \ _I ) )
5 1 fvexi
 |-  O e. _V
6 1 3 oppgle
 |-  ( le ` R ) = ( le ` O )
7 eqid
 |-  ( lt ` O ) = ( lt ` O )
8 6 7 pltfval
 |-  ( O e. _V -> ( lt ` O ) = ( ( le ` R ) \ _I ) )
9 5 8 ax-mp
 |-  ( lt ` O ) = ( ( le ` R ) \ _I )
10 4 9 eqtr4di
 |-  ( R e. V -> .< = ( lt ` O ) )