Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppglt.1 | |- O = ( oppG ` R ) |
|
| oppglt.2 | |- .< = ( lt ` R ) |
||
| Assertion | oppglt | |- ( R e. V -> .< = ( lt ` O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppglt.1 | |- O = ( oppG ` R ) |
|
| 2 | oppglt.2 | |- .< = ( lt ` R ) |
|
| 3 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 4 | 3 2 | pltfval | |- ( R e. V -> .< = ( ( le ` R ) \ _I ) ) |
| 5 | 1 | fvexi | |- O e. _V |
| 6 | 1 3 | oppgle | |- ( le ` R ) = ( le ` O ) |
| 7 | eqid | |- ( lt ` O ) = ( lt ` O ) |
|
| 8 | 6 7 | pltfval | |- ( O e. _V -> ( lt ` O ) = ( ( le ` R ) \ _I ) ) |
| 9 | 5 8 | ax-mp | |- ( lt ` O ) = ( ( le ` R ) \ _I ) |
| 10 | 4 9 | eqtr4di | |- ( R e. V -> .< = ( lt ` O ) ) |