Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| pltval.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pltfval | ⊢ ( 𝐾 ∈ 𝐴 → < = ( ≤ ∖ I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | pltval.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | elex | ⊢ ( 𝐾 ∈ 𝐴 → 𝐾 ∈ V ) | |
| 4 | fveq2 | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ( le ‘ 𝐾 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑝 = 𝐾 → ( le ‘ 𝑝 ) = ≤ ) |
| 6 | 5 | difeq1d | ⊢ ( 𝑝 = 𝐾 → ( ( le ‘ 𝑝 ) ∖ I ) = ( ≤ ∖ I ) ) |
| 7 | df-plt | ⊢ lt = ( 𝑝 ∈ V ↦ ( ( le ‘ 𝑝 ) ∖ I ) ) | |
| 8 | 1 | fvexi | ⊢ ≤ ∈ V |
| 9 | 8 | difexi | ⊢ ( ≤ ∖ I ) ∈ V |
| 10 | 6 7 9 | fvmpt | ⊢ ( 𝐾 ∈ V → ( lt ‘ 𝐾 ) = ( ≤ ∖ I ) ) |
| 11 | 3 10 | syl | ⊢ ( 𝐾 ∈ 𝐴 → ( lt ‘ 𝐾 ) = ( ≤ ∖ I ) ) |
| 12 | 2 11 | eqtrid | ⊢ ( 𝐾 ∈ 𝐴 → < = ( ≤ ∖ I ) ) |