Metamath Proof Explorer


Theorem ogrpaddltrbid

Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018)

Ref Expression
Hypotheses ogrpaddlt.0 𝐵 = ( Base ‘ 𝐺 )
ogrpaddlt.1 < = ( lt ‘ 𝐺 )
ogrpaddlt.2 + = ( +g𝐺 )
ogrpaddltrd.1 ( 𝜑𝐺𝑉 )
ogrpaddltrd.2 ( 𝜑 → ( oppg𝐺 ) ∈ oGrp )
ogrpaddltrd.3 ( 𝜑𝑋𝐵 )
ogrpaddltrd.4 ( 𝜑𝑌𝐵 )
ogrpaddltrd.5 ( 𝜑𝑍𝐵 )
Assertion ogrpaddltrbid ( 𝜑 → ( 𝑋 < 𝑌 ↔ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 ogrpaddlt.0 𝐵 = ( Base ‘ 𝐺 )
2 ogrpaddlt.1 < = ( lt ‘ 𝐺 )
3 ogrpaddlt.2 + = ( +g𝐺 )
4 ogrpaddltrd.1 ( 𝜑𝐺𝑉 )
5 ogrpaddltrd.2 ( 𝜑 → ( oppg𝐺 ) ∈ oGrp )
6 ogrpaddltrd.3 ( 𝜑𝑋𝐵 )
7 ogrpaddltrd.4 ( 𝜑𝑌𝐵 )
8 ogrpaddltrd.5 ( 𝜑𝑍𝐵 )
9 4 adantr ( ( 𝜑𝑋 < 𝑌 ) → 𝐺𝑉 )
10 5 adantr ( ( 𝜑𝑋 < 𝑌 ) → ( oppg𝐺 ) ∈ oGrp )
11 6 adantr ( ( 𝜑𝑋 < 𝑌 ) → 𝑋𝐵 )
12 7 adantr ( ( 𝜑𝑋 < 𝑌 ) → 𝑌𝐵 )
13 8 adantr ( ( 𝜑𝑋 < 𝑌 ) → 𝑍𝐵 )
14 simpr ( ( 𝜑𝑋 < 𝑌 ) → 𝑋 < 𝑌 )
15 1 2 3 9 10 11 12 13 14 ogrpaddltrd ( ( 𝜑𝑋 < 𝑌 ) → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) )
16 4 adantr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝐺𝑉 )
17 5 adantr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( oppg𝐺 ) ∈ oGrp )
18 ogrpgrp ( ( oppg𝐺 ) ∈ oGrp → ( oppg𝐺 ) ∈ Grp )
19 5 18 syl ( 𝜑 → ( oppg𝐺 ) ∈ Grp )
20 19 adantr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( oppg𝐺 ) ∈ Grp )
21 6 adantr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑋𝐵 )
22 8 adantr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑍𝐵 )
23 eqid ( oppg𝐺 ) = ( oppg𝐺 )
24 eqid ( +g ‘ ( oppg𝐺 ) ) = ( +g ‘ ( oppg𝐺 ) )
25 3 23 24 oppgplus ( 𝑋 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑋 )
26 23 1 oppgbas 𝐵 = ( Base ‘ ( oppg𝐺 ) )
27 26 24 grpcl ( ( ( oppg𝐺 ) ∈ Grp ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑋 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) ∈ 𝐵 )
28 25 27 eqeltrrid ( ( ( oppg𝐺 ) ∈ Grp ∧ 𝑋𝐵𝑍𝐵 ) → ( 𝑍 + 𝑋 ) ∈ 𝐵 )
29 20 21 22 28 syl3anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑋 ) ∈ 𝐵 )
30 7 adantr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑌𝐵 )
31 3 23 24 oppgplus ( 𝑌 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑌 )
32 26 24 grpcl ( ( ( oppg𝐺 ) ∈ Grp ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑌 ( +g ‘ ( oppg𝐺 ) ) 𝑍 ) ∈ 𝐵 )
33 31 32 eqeltrrid ( ( ( oppg𝐺 ) ∈ Grp ∧ 𝑌𝐵𝑍𝐵 ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 )
34 20 30 22 33 syl3anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 )
35 23 oppggrpb ( 𝐺 ∈ Grp ↔ ( oppg𝐺 ) ∈ Grp )
36 20 35 sylibr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝐺 ∈ Grp )
37 eqid ( invg𝐺 ) = ( invg𝐺 )
38 1 37 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑍𝐵 ) → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
39 36 22 38 syl2anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵 )
40 simpr ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) )
41 1 2 3 16 17 29 34 39 40 ogrpaddltrd ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) < ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) )
42 eqid ( 0g𝐺 ) = ( 0g𝐺 )
43 1 3 42 37 grplinv ( ( 𝐺 ∈ Grp ∧ 𝑍𝐵 ) → ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g𝐺 ) )
44 36 22 43 syl2anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g𝐺 ) )
45 44 oveq1d ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( 0g𝐺 ) + 𝑋 ) )
46 1 3 grpass ( ( 𝐺 ∈ Grp ∧ ( ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵𝑍𝐵𝑋𝐵 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) )
47 36 39 22 21 46 syl13anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) )
48 1 3 42 grplid ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( ( 0g𝐺 ) + 𝑋 ) = 𝑋 )
49 36 21 48 syl2anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( 0g𝐺 ) + 𝑋 ) = 𝑋 )
50 45 47 49 3eqtr3d ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 )
51 44 oveq1d ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( 0g𝐺 ) + 𝑌 ) )
52 1 3 grpass ( ( 𝐺 ∈ Grp ∧ ( ( ( invg𝐺 ) ‘ 𝑍 ) ∈ 𝐵𝑍𝐵𝑌𝐵 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) )
53 36 39 22 30 52 syl13anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) )
54 1 3 42 grplid ( ( 𝐺 ∈ Grp ∧ 𝑌𝐵 ) → ( ( 0g𝐺 ) + 𝑌 ) = 𝑌 )
55 36 30 54 syl2anc ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( 0g𝐺 ) + 𝑌 ) = 𝑌 )
56 51 53 55 3eqtr3d ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 )
57 41 50 56 3brtr3d ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑋 < 𝑌 )
58 15 57 impbida ( 𝜑 → ( 𝑋 < 𝑌 ↔ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) )