| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ogrpaddlt.0 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ogrpaddlt.1 |
⊢ < = ( lt ‘ 𝐺 ) |
| 3 |
|
ogrpaddlt.2 |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
ogrpaddltrd.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 5 |
|
ogrpaddltrd.2 |
⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ oGrp ) |
| 6 |
|
ogrpaddltrd.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
ogrpaddltrd.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 8 |
|
ogrpaddltrd.5 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
| 9 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ 𝑉 ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( oppg ‘ 𝐺 ) ∈ oGrp ) |
| 11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ 𝐵 ) |
| 12 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ 𝐵 ) |
| 13 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑍 ∈ 𝐵 ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) |
| 15 |
1 2 3 9 10 11 12 13 14
|
ogrpaddltrd |
⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝐺 ∈ 𝑉 ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( oppg ‘ 𝐺 ) ∈ oGrp ) |
| 18 |
|
ogrpgrp |
⊢ ( ( oppg ‘ 𝐺 ) ∈ oGrp → ( oppg ‘ 𝐺 ) ∈ Grp ) |
| 19 |
5 18
|
syl |
⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ Grp ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( oppg ‘ 𝐺 ) ∈ Grp ) |
| 21 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑍 ∈ 𝐵 ) |
| 23 |
|
eqid |
⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) |
| 24 |
|
eqid |
⊢ ( +g ‘ ( oppg ‘ 𝐺 ) ) = ( +g ‘ ( oppg ‘ 𝐺 ) ) |
| 25 |
3 23 24
|
oppgplus |
⊢ ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑋 ) |
| 26 |
23 1
|
oppgbas |
⊢ 𝐵 = ( Base ‘ ( oppg ‘ 𝐺 ) ) |
| 27 |
26 24
|
grpcl |
⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ∈ 𝐵 ) |
| 28 |
25 27
|
eqeltrrid |
⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + 𝑋 ) ∈ 𝐵 ) |
| 29 |
20 21 22 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑋 ) ∈ 𝐵 ) |
| 30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 31 |
3 23 24
|
oppgplus |
⊢ ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑌 ) |
| 32 |
26 24
|
grpcl |
⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ∈ 𝐵 ) |
| 33 |
31 32
|
eqeltrrid |
⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 34 |
20 30 22 33
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 35 |
23
|
oppggrpb |
⊢ ( 𝐺 ∈ Grp ↔ ( oppg ‘ 𝐺 ) ∈ Grp ) |
| 36 |
20 35
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝐺 ∈ Grp ) |
| 37 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 38 |
1 37
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 39 |
36 22 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) |
| 41 |
1 2 3 16 17 29 34 39 40
|
ogrpaddltrd |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) < ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 43 |
1 3 42 37
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 44 |
36 22 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
| 46 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 47 |
36 39 22 21 46
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 48 |
1 3 42
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 49 |
36 21 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 50 |
45 47 49
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 51 |
44
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
| 52 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 53 |
36 39 22 30 52
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 54 |
1 3 42
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 55 |
36 30 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 56 |
51 53 55
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 57 |
41 50 56
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑋 < 𝑌 ) |
| 58 |
15 57
|
impbida |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) ) |