| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ogrpaddlt.0 |
|- B = ( Base ` G ) |
| 2 |
|
ogrpaddlt.1 |
|- .< = ( lt ` G ) |
| 3 |
|
ogrpaddlt.2 |
|- .+ = ( +g ` G ) |
| 4 |
|
ogrpaddltrd.1 |
|- ( ph -> G e. V ) |
| 5 |
|
ogrpaddltrd.2 |
|- ( ph -> ( oppG ` G ) e. oGrp ) |
| 6 |
|
ogrpaddltrd.3 |
|- ( ph -> X e. B ) |
| 7 |
|
ogrpaddltrd.4 |
|- ( ph -> Y e. B ) |
| 8 |
|
ogrpaddltrd.5 |
|- ( ph -> Z e. B ) |
| 9 |
4
|
adantr |
|- ( ( ph /\ X .< Y ) -> G e. V ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ X .< Y ) -> ( oppG ` G ) e. oGrp ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ X .< Y ) -> X e. B ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ X .< Y ) -> Y e. B ) |
| 13 |
8
|
adantr |
|- ( ( ph /\ X .< Y ) -> Z e. B ) |
| 14 |
|
simpr |
|- ( ( ph /\ X .< Y ) -> X .< Y ) |
| 15 |
1 2 3 9 10 11 12 13 14
|
ogrpaddltrd |
|- ( ( ph /\ X .< Y ) -> ( Z .+ X ) .< ( Z .+ Y ) ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> G e. V ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( oppG ` G ) e. oGrp ) |
| 18 |
|
ogrpgrp |
|- ( ( oppG ` G ) e. oGrp -> ( oppG ` G ) e. Grp ) |
| 19 |
5 18
|
syl |
|- ( ph -> ( oppG ` G ) e. Grp ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( oppG ` G ) e. Grp ) |
| 21 |
6
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> X e. B ) |
| 22 |
8
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> Z e. B ) |
| 23 |
|
eqid |
|- ( oppG ` G ) = ( oppG ` G ) |
| 24 |
|
eqid |
|- ( +g ` ( oppG ` G ) ) = ( +g ` ( oppG ` G ) ) |
| 25 |
3 23 24
|
oppgplus |
|- ( X ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ X ) |
| 26 |
23 1
|
oppgbas |
|- B = ( Base ` ( oppG ` G ) ) |
| 27 |
26 24
|
grpcl |
|- ( ( ( oppG ` G ) e. Grp /\ X e. B /\ Z e. B ) -> ( X ( +g ` ( oppG ` G ) ) Z ) e. B ) |
| 28 |
25 27
|
eqeltrrid |
|- ( ( ( oppG ` G ) e. Grp /\ X e. B /\ Z e. B ) -> ( Z .+ X ) e. B ) |
| 29 |
20 21 22 28
|
syl3anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ X ) e. B ) |
| 30 |
7
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> Y e. B ) |
| 31 |
3 23 24
|
oppgplus |
|- ( Y ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ Y ) |
| 32 |
26 24
|
grpcl |
|- ( ( ( oppG ` G ) e. Grp /\ Y e. B /\ Z e. B ) -> ( Y ( +g ` ( oppG ` G ) ) Z ) e. B ) |
| 33 |
31 32
|
eqeltrrid |
|- ( ( ( oppG ` G ) e. Grp /\ Y e. B /\ Z e. B ) -> ( Z .+ Y ) e. B ) |
| 34 |
20 30 22 33
|
syl3anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ Y ) e. B ) |
| 35 |
23
|
oppggrpb |
|- ( G e. Grp <-> ( oppG ` G ) e. Grp ) |
| 36 |
20 35
|
sylibr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> G e. Grp ) |
| 37 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 38 |
1 37
|
grpinvcl |
|- ( ( G e. Grp /\ Z e. B ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 39 |
36 22 38
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 40 |
|
simpr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ X ) .< ( Z .+ Y ) ) |
| 41 |
1 2 3 16 17 29 34 39 40
|
ogrpaddltrd |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) .< ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
| 42 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 43 |
1 3 42 37
|
grplinv |
|- ( ( G e. Grp /\ Z e. B ) -> ( ( ( invg ` G ) ` Z ) .+ Z ) = ( 0g ` G ) ) |
| 44 |
36 22 43
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ Z ) = ( 0g ` G ) ) |
| 45 |
44
|
oveq1d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( 0g ` G ) .+ X ) ) |
| 46 |
1 3
|
grpass |
|- ( ( G e. Grp /\ ( ( ( invg ` G ) ` Z ) e. B /\ Z e. B /\ X e. B ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) ) |
| 47 |
36 39 22 21 46
|
syl13anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) ) |
| 48 |
1 3 42
|
grplid |
|- ( ( G e. Grp /\ X e. B ) -> ( ( 0g ` G ) .+ X ) = X ) |
| 49 |
36 21 48
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( 0g ` G ) .+ X ) = X ) |
| 50 |
45 47 49
|
3eqtr3d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) = X ) |
| 51 |
44
|
oveq1d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( 0g ` G ) .+ Y ) ) |
| 52 |
1 3
|
grpass |
|- ( ( G e. Grp /\ ( ( ( invg ` G ) ` Z ) e. B /\ Z e. B /\ Y e. B ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
| 53 |
36 39 22 30 52
|
syl13anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
| 54 |
1 3 42
|
grplid |
|- ( ( G e. Grp /\ Y e. B ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 55 |
36 30 54
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
| 56 |
51 53 55
|
3eqtr3d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) = Y ) |
| 57 |
41 50 56
|
3brtr3d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> X .< Y ) |
| 58 |
15 57
|
impbida |
|- ( ph -> ( X .< Y <-> ( Z .+ X ) .< ( Z .+ Y ) ) ) |