Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpaddlt.0 |
|- B = ( Base ` G ) |
2 |
|
ogrpaddlt.1 |
|- .< = ( lt ` G ) |
3 |
|
ogrpaddlt.2 |
|- .+ = ( +g ` G ) |
4 |
|
ogrpaddltrd.1 |
|- ( ph -> G e. V ) |
5 |
|
ogrpaddltrd.2 |
|- ( ph -> ( oppG ` G ) e. oGrp ) |
6 |
|
ogrpaddltrd.3 |
|- ( ph -> X e. B ) |
7 |
|
ogrpaddltrd.4 |
|- ( ph -> Y e. B ) |
8 |
|
ogrpaddltrd.5 |
|- ( ph -> Z e. B ) |
9 |
4
|
adantr |
|- ( ( ph /\ X .< Y ) -> G e. V ) |
10 |
5
|
adantr |
|- ( ( ph /\ X .< Y ) -> ( oppG ` G ) e. oGrp ) |
11 |
6
|
adantr |
|- ( ( ph /\ X .< Y ) -> X e. B ) |
12 |
7
|
adantr |
|- ( ( ph /\ X .< Y ) -> Y e. B ) |
13 |
8
|
adantr |
|- ( ( ph /\ X .< Y ) -> Z e. B ) |
14 |
|
simpr |
|- ( ( ph /\ X .< Y ) -> X .< Y ) |
15 |
1 2 3 9 10 11 12 13 14
|
ogrpaddltrd |
|- ( ( ph /\ X .< Y ) -> ( Z .+ X ) .< ( Z .+ Y ) ) |
16 |
4
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> G e. V ) |
17 |
5
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( oppG ` G ) e. oGrp ) |
18 |
|
ogrpgrp |
|- ( ( oppG ` G ) e. oGrp -> ( oppG ` G ) e. Grp ) |
19 |
5 18
|
syl |
|- ( ph -> ( oppG ` G ) e. Grp ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( oppG ` G ) e. Grp ) |
21 |
6
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> X e. B ) |
22 |
8
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> Z e. B ) |
23 |
|
eqid |
|- ( oppG ` G ) = ( oppG ` G ) |
24 |
|
eqid |
|- ( +g ` ( oppG ` G ) ) = ( +g ` ( oppG ` G ) ) |
25 |
3 23 24
|
oppgplus |
|- ( X ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ X ) |
26 |
23 1
|
oppgbas |
|- B = ( Base ` ( oppG ` G ) ) |
27 |
26 24
|
grpcl |
|- ( ( ( oppG ` G ) e. Grp /\ X e. B /\ Z e. B ) -> ( X ( +g ` ( oppG ` G ) ) Z ) e. B ) |
28 |
25 27
|
eqeltrrid |
|- ( ( ( oppG ` G ) e. Grp /\ X e. B /\ Z e. B ) -> ( Z .+ X ) e. B ) |
29 |
20 21 22 28
|
syl3anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ X ) e. B ) |
30 |
7
|
adantr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> Y e. B ) |
31 |
3 23 24
|
oppgplus |
|- ( Y ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ Y ) |
32 |
26 24
|
grpcl |
|- ( ( ( oppG ` G ) e. Grp /\ Y e. B /\ Z e. B ) -> ( Y ( +g ` ( oppG ` G ) ) Z ) e. B ) |
33 |
31 32
|
eqeltrrid |
|- ( ( ( oppG ` G ) e. Grp /\ Y e. B /\ Z e. B ) -> ( Z .+ Y ) e. B ) |
34 |
20 30 22 33
|
syl3anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ Y ) e. B ) |
35 |
23
|
oppggrpb |
|- ( G e. Grp <-> ( oppG ` G ) e. Grp ) |
36 |
20 35
|
sylibr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> G e. Grp ) |
37 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
38 |
1 37
|
grpinvcl |
|- ( ( G e. Grp /\ Z e. B ) -> ( ( invg ` G ) ` Z ) e. B ) |
39 |
36 22 38
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( invg ` G ) ` Z ) e. B ) |
40 |
|
simpr |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( Z .+ X ) .< ( Z .+ Y ) ) |
41 |
1 2 3 16 17 29 34 39 40
|
ogrpaddltrd |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) .< ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
42 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
43 |
1 3 42 37
|
grplinv |
|- ( ( G e. Grp /\ Z e. B ) -> ( ( ( invg ` G ) ` Z ) .+ Z ) = ( 0g ` G ) ) |
44 |
36 22 43
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ Z ) = ( 0g ` G ) ) |
45 |
44
|
oveq1d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( 0g ` G ) .+ X ) ) |
46 |
1 3
|
grpass |
|- ( ( G e. Grp /\ ( ( ( invg ` G ) ` Z ) e. B /\ Z e. B /\ X e. B ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) ) |
47 |
36 39 22 21 46
|
syl13anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ X ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) ) |
48 |
1 3 42
|
grplid |
|- ( ( G e. Grp /\ X e. B ) -> ( ( 0g ` G ) .+ X ) = X ) |
49 |
36 21 48
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( 0g ` G ) .+ X ) = X ) |
50 |
45 47 49
|
3eqtr3d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ X ) ) = X ) |
51 |
44
|
oveq1d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( 0g ` G ) .+ Y ) ) |
52 |
1 3
|
grpass |
|- ( ( G e. Grp /\ ( ( ( invg ` G ) ` Z ) e. B /\ Z e. B /\ Y e. B ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
53 |
36 39 22 30 52
|
syl13anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( ( invg ` G ) ` Z ) .+ Z ) .+ Y ) = ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) ) |
54 |
1 3 42
|
grplid |
|- ( ( G e. Grp /\ Y e. B ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
55 |
36 30 54
|
syl2anc |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( 0g ` G ) .+ Y ) = Y ) |
56 |
51 53 55
|
3eqtr3d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> ( ( ( invg ` G ) ` Z ) .+ ( Z .+ Y ) ) = Y ) |
57 |
41 50 56
|
3brtr3d |
|- ( ( ph /\ ( Z .+ X ) .< ( Z .+ Y ) ) -> X .< Y ) |
58 |
15 57
|
impbida |
|- ( ph -> ( X .< Y <-> ( Z .+ X ) .< ( Z .+ Y ) ) ) |