| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ogrpaddlt.0 |
|- B = ( Base ` G ) |
| 2 |
|
ogrpaddlt.1 |
|- .< = ( lt ` G ) |
| 3 |
|
ogrpaddlt.2 |
|- .+ = ( +g ` G ) |
| 4 |
|
ogrpaddltrd.1 |
|- ( ph -> G e. V ) |
| 5 |
|
ogrpaddltrd.2 |
|- ( ph -> ( oppG ` G ) e. oGrp ) |
| 6 |
|
ogrpaddltrd.3 |
|- ( ph -> X e. B ) |
| 7 |
|
ogrpaddltrd.4 |
|- ( ph -> Y e. B ) |
| 8 |
|
ogrpaddltrd.5 |
|- ( ph -> Z e. B ) |
| 9 |
|
ogrpaddltrd.6 |
|- ( ph -> X .< Y ) |
| 10 |
|
eqid |
|- ( oppG ` G ) = ( oppG ` G ) |
| 11 |
10 2
|
oppglt |
|- ( G e. V -> .< = ( lt ` ( oppG ` G ) ) ) |
| 12 |
4 11
|
syl |
|- ( ph -> .< = ( lt ` ( oppG ` G ) ) ) |
| 13 |
12
|
breqd |
|- ( ph -> ( X .< Y <-> X ( lt ` ( oppG ` G ) ) Y ) ) |
| 14 |
9 13
|
mpbid |
|- ( ph -> X ( lt ` ( oppG ` G ) ) Y ) |
| 15 |
10 1
|
oppgbas |
|- B = ( Base ` ( oppG ` G ) ) |
| 16 |
|
eqid |
|- ( lt ` ( oppG ` G ) ) = ( lt ` ( oppG ` G ) ) |
| 17 |
|
eqid |
|- ( +g ` ( oppG ` G ) ) = ( +g ` ( oppG ` G ) ) |
| 18 |
15 16 17
|
ogrpaddlt |
|- ( ( ( oppG ` G ) e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X ( lt ` ( oppG ` G ) ) Y ) -> ( X ( +g ` ( oppG ` G ) ) Z ) ( lt ` ( oppG ` G ) ) ( Y ( +g ` ( oppG ` G ) ) Z ) ) |
| 19 |
5 6 7 8 14 18
|
syl131anc |
|- ( ph -> ( X ( +g ` ( oppG ` G ) ) Z ) ( lt ` ( oppG ` G ) ) ( Y ( +g ` ( oppG ` G ) ) Z ) ) |
| 20 |
3 10 17
|
oppgplus |
|- ( X ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ X ) |
| 21 |
3 10 17
|
oppgplus |
|- ( Y ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ Y ) |
| 22 |
19 20 21
|
3brtr3g |
|- ( ph -> ( Z .+ X ) ( lt ` ( oppG ` G ) ) ( Z .+ Y ) ) |
| 23 |
12
|
breqd |
|- ( ph -> ( ( Z .+ X ) .< ( Z .+ Y ) <-> ( Z .+ X ) ( lt ` ( oppG ` G ) ) ( Z .+ Y ) ) ) |
| 24 |
22 23
|
mpbird |
|- ( ph -> ( Z .+ X ) .< ( Z .+ Y ) ) |