Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpaddlt.0 |
|- B = ( Base ` G ) |
2 |
|
ogrpaddlt.1 |
|- .< = ( lt ` G ) |
3 |
|
ogrpaddlt.2 |
|- .+ = ( +g ` G ) |
4 |
|
ogrpaddltrd.1 |
|- ( ph -> G e. V ) |
5 |
|
ogrpaddltrd.2 |
|- ( ph -> ( oppG ` G ) e. oGrp ) |
6 |
|
ogrpaddltrd.3 |
|- ( ph -> X e. B ) |
7 |
|
ogrpaddltrd.4 |
|- ( ph -> Y e. B ) |
8 |
|
ogrpaddltrd.5 |
|- ( ph -> Z e. B ) |
9 |
|
ogrpaddltrd.6 |
|- ( ph -> X .< Y ) |
10 |
|
eqid |
|- ( oppG ` G ) = ( oppG ` G ) |
11 |
10 2
|
oppglt |
|- ( G e. V -> .< = ( lt ` ( oppG ` G ) ) ) |
12 |
4 11
|
syl |
|- ( ph -> .< = ( lt ` ( oppG ` G ) ) ) |
13 |
12
|
breqd |
|- ( ph -> ( X .< Y <-> X ( lt ` ( oppG ` G ) ) Y ) ) |
14 |
9 13
|
mpbid |
|- ( ph -> X ( lt ` ( oppG ` G ) ) Y ) |
15 |
10 1
|
oppgbas |
|- B = ( Base ` ( oppG ` G ) ) |
16 |
|
eqid |
|- ( lt ` ( oppG ` G ) ) = ( lt ` ( oppG ` G ) ) |
17 |
|
eqid |
|- ( +g ` ( oppG ` G ) ) = ( +g ` ( oppG ` G ) ) |
18 |
15 16 17
|
ogrpaddlt |
|- ( ( ( oppG ` G ) e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X ( lt ` ( oppG ` G ) ) Y ) -> ( X ( +g ` ( oppG ` G ) ) Z ) ( lt ` ( oppG ` G ) ) ( Y ( +g ` ( oppG ` G ) ) Z ) ) |
19 |
5 6 7 8 14 18
|
syl131anc |
|- ( ph -> ( X ( +g ` ( oppG ` G ) ) Z ) ( lt ` ( oppG ` G ) ) ( Y ( +g ` ( oppG ` G ) ) Z ) ) |
20 |
3 10 17
|
oppgplus |
|- ( X ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ X ) |
21 |
3 10 17
|
oppgplus |
|- ( Y ( +g ` ( oppG ` G ) ) Z ) = ( Z .+ Y ) |
22 |
19 20 21
|
3brtr3g |
|- ( ph -> ( Z .+ X ) ( lt ` ( oppG ` G ) ) ( Z .+ Y ) ) |
23 |
12
|
breqd |
|- ( ph -> ( ( Z .+ X ) .< ( Z .+ Y ) <-> ( Z .+ X ) ( lt ` ( oppG ` G ) ) ( Z .+ Y ) ) ) |
24 |
22 23
|
mpbird |
|- ( ph -> ( Z .+ X ) .< ( Z .+ Y ) ) |