Step |
Hyp |
Ref |
Expression |
1 |
|
ogrpaddlt.0 |
|
2 |
|
ogrpaddlt.1 |
|
3 |
|
ogrpaddlt.2 |
|
4 |
1 2 3
|
ogrpaddlt |
|
5 |
4
|
3expa |
|
6 |
|
simpll |
|
7 |
|
ogrpgrp |
|
8 |
6 7
|
syl |
|
9 |
|
simplr1 |
|
10 |
|
simplr3 |
|
11 |
1 3
|
grpcl |
|
12 |
8 9 10 11
|
syl3anc |
|
13 |
|
simplr2 |
|
14 |
1 3
|
grpcl |
|
15 |
8 13 10 14
|
syl3anc |
|
16 |
|
eqid |
|
17 |
1 16
|
grpinvcl |
|
18 |
8 10 17
|
syl2anc |
|
19 |
|
simpr |
|
20 |
1 2 3
|
ogrpaddlt |
|
21 |
6 12 15 18 19 20
|
syl131anc |
|
22 |
1 3
|
grpass |
|
23 |
8 9 10 18 22
|
syl13anc |
|
24 |
|
eqid |
|
25 |
1 3 24 16
|
grprinv |
|
26 |
8 10 25
|
syl2anc |
|
27 |
26
|
oveq2d |
|
28 |
1 3 24
|
grprid |
|
29 |
8 9 28
|
syl2anc |
|
30 |
23 27 29
|
3eqtrd |
|
31 |
1 3
|
grpass |
|
32 |
8 13 10 18 31
|
syl13anc |
|
33 |
26
|
oveq2d |
|
34 |
1 3 24
|
grprid |
|
35 |
8 13 34
|
syl2anc |
|
36 |
32 33 35
|
3eqtrd |
|
37 |
21 30 36
|
3brtr3d |
|
38 |
5 37
|
impbida |
|