Metamath Proof Explorer
Table of Contents - 20.3.9. Algebra
- Monoids Homomorphisms
- abliso
- Finitely supported group sums - misc additions
- gsumsubg
- gsumsra
- gsummpt2co
- gsummpt2d
- lmodvslmhm
- gsumvsmul1
- gsummptres
- gsummptres2
- gsumzresunsn
- gsumpart
- gsumhashmul
- xrge0tsmsd
- xrge0tsmsbi
- xrge0tsmseq
- Centralizers and centers - misc additions
- cntzun
- cntzsnid
- cntrcrng
- Totally ordered monoids and groups
- comnd
- cogrp
- df-omnd
- df-ogrp
- isomnd
- isogrp
- ogrpgrp
- omndmnd
- omndtos
- omndadd
- omndaddr
- omndadd2d
- omndadd2rd
- submomnd
- xrge0omnd
- omndmul2
- omndmul3
- omndmul
- ogrpinv0le
- ogrpsub
- ogrpaddlt
- ogrpaddltbi
- ogrpaddltrd
- ogrpaddltrbid
- ogrpsublt
- ogrpinv0lt
- ogrpinvlt
- gsumle
- The symmetric group
- symgfcoeu
- symgcom
- symgcom2
- symgcntz
- odpmco
- symgsubg
- pmtrprfv2
- pmtrcnel
- pmtrcnel2
- pmtrcnelor
- Transpositions
- pmtridf1o
- pmtridfv1
- pmtridfv2
- Permutation Signs
- psgnid
- psgndmfi
- pmtrto1cl
- psgnfzto1stlem
- fzto1stfv1
- fzto1st1
- fzto1st
- fzto1stinvn
- psgnfzto1st
- Permutation cycles
- ctocyc
- df-tocyc
- tocycval
- tocycfv
- tocycfvres1
- tocycfvres2
- cycpmfvlem
- cycpmfv1
- cycpmfv2
- cycpmfv3
- cycpmcl
- tocycf
- tocyc01
- cycpm2tr
- cycpm2cl
- cyc2fv1
- cyc2fv2
- trsp2cyc
- cycpmco2f1
- cycpmco2rn
- cycpmco2lem1
- cycpmco2lem2
- cycpmco2lem3
- cycpmco2lem4
- cycpmco2lem5
- cycpmco2lem6
- cycpmco2lem7
- cycpmco2
- cyc2fvx
- cycpm3cl
- cycpm3cl2
- cyc3fv1
- cyc3fv2
- cyc3fv3
- cyc3co2
- cycpmconjvlem
- cycpmconjv
- cycpmrn
- tocyccntz
- The Alternating Group
- evpmval
- cnmsgn0g
- evpmsubg
- evpmid
- altgnsg
- cyc3evpm
- cyc3genpmlem
- cyc3genpm
- cycpmgcl
- cycpmconjslem1
- cycpmconjslem2
- cycpmconjs
- cyc3conja
- Signum in an ordered monoid
- csgns
- df-sgns
- sgnsv
- sgnsval
- sgnsf
- The Archimedean property for generic ordered algebraic structures
- cinftm
- carchi
- df-inftm
- df-archi
- inftmrel
- isinftm
- isarchi
- pnfinf
- xrnarchi
- isarchi2
- submarchi
- isarchi3
- archirng
- archirngz
- archiexdiv
- archiabllem1a
- archiabllem1b
- archiabllem1
- archiabllem2a
- archiabllem2c
- archiabllem2b
- archiabllem2
- archiabl
- Semiring left modules
- cslmd
- df-slmd
- isslmd
- slmdlema
- lmodslmd
- slmdcmn
- slmdmnd
- slmdsrg
- slmdbn0
- slmdacl
- slmdmcl
- slmdsn0
- slmdvacl
- slmdass
- slmdvscl
- slmdvsdi
- slmdvsdir
- slmdvsass
- slmd0cl
- slmd1cl
- slmdvs1
- slmd0vcl
- slmd0vlid
- slmd0vrid
- slmd0vs
- slmdvs0
- gsumvsca1
- gsumvsca2
- Simple groups
- prmsimpcyc
- Rings - misc additions
- rngurd
- dvdschrmulg
- freshmansdream
- frobrhm
- ress1r
- dvrdir
- rdivmuldivd
- ringinvval
- dvrcan5
- subrgchr
- rmfsupp2
- Subfields
- primefldchr
- Totally ordered rings and fields
- corng
- cofld
- df-orng
- df-ofld
- isorng
- orngring
- orngogrp
- isofld
- orngmul
- orngsqr
- ornglmulle
- orngrmulle
- ornglmullt
- orngrmullt
- orngmullt
- ofldfld
- ofldtos
- orng0le1
- ofldlt1
- ofldchr
- suborng
- subofld
- isarchiofld
- Ring homomorphisms - misc additions
- rhmdvdsr
- rhmopp
- elrhmunit
- rhmdvd
- rhmunitinv
- kerunit
- Scalar restriction operation
- cresv
- df-resv
- reldmresv
- resvval
- resvid2
- resvval2
- resvsca
- resvlem
- resvlemOLD
- resvbas
- resvbasOLD
- resvplusg
- resvplusgOLD
- resvvsca
- resvvscaOLD
- resvmulr
- resvmulrOLD
- resv0g
- resv1r
- resvcmn
- The commutative ring of gaussian integers
- gzcrng
- The archimedean ordered field of real numbers
- reofld
- nn0omnd
- rearchi
- nn0archi
- xrge0slmod
- The quotient map and quotient modules
- qusker
- eqgvscpbl
- qusvscpbl
- qusscaval
- imaslmod
- quslmod
- quslmhm
- ecxpid
- eqg0el
- qsxpid
- qusxpid
- qustriv
- qustrivr
- The ring of integers modulo ` N `
- znfermltl
- Independent sets and families
- islinds5
- ellspds
- 0ellsp
- 0nellinds
- rspsnel
- rspsnid
- elrsp
- rspidlid
- pidlnz
- lbslsp
- lindssn
- lindflbs
- linds2eq
- lindfpropd
- lindspropd
- Subgroup sum / Sumset / Minkowski sum
- elgrplsmsn
- lsmsnorb
- lsmsnorb2
- elringlsm
- elringlsmd
- ringlsmss
- ringlsmss1
- ringlsmss2
- lsmsnpridl
- lsmsnidl
- lsmidllsp
- lsmidl
- lsmssass
- grplsm0l
- grplsmid
- The quotient map
- quslsm
- qusima
- nsgqus0
- nsgmgclem
- nsgmgc
- nsgqusf1olem1
- nsgqusf1olem2
- nsgqusf1olem3
- nsgqusf1o
- Ideals
- intlidl
- rhmpreimaidl
- kerlidl
- 0ringidl
- elrspunidl
- lidlincl
- idlinsubrg
- rhmimaidl
- Prime Ideals
- cprmidl
- df-prmidl
- prmidlval
- isprmidl
- prmidlnr
- prmidl
- prmidl2
- idlmulssprm
- pridln1
- prmidlidl
- prmidlssidl
- lidlnsg
- cringm4
- isprmidlc
- prmidlc
- 0ringprmidl
- prmidl0
- rhmpreimaprmidl
- qsidomlem1
- qsidomlem2
- qsidom
- Maximal Ideals
- cmxidl
- df-mxidl
- mxidlval
- ismxidl
- mxidlidl
- mxidlnr
- mxidlmax
- mxidln1
- mxidlnzr
- mxidlprm
- ssmxidllem
- ssmxidl
- krull
- mxidlnzrb
- The semiring of ideals of a ring
- cidlsrg
- df-idlsrg
- idlsrgstr
- idlsrgval
- idlsrgbas
- idlsrgplusg
- idlsrg0g
- idlsrgmulr
- idlsrgtset
- idlsrgmulrval
- idlsrgmulrcl
- idlsrgmulrss1
- idlsrgmulrss2
- idlsrgmulrssin
- idlsrgmnd
- idlsrgcmnd
- Prime Elements
- Unique factorization domains
- cufd
- df-ufd
- isufd
- rprmval
- isrprm
- Associative algebras
- asclmulg
- Univariate Polynomials
- fply1
- ply1scleq
- ply1chr
- ply1fermltl
- The subring algebra
- sra1r
- sraring
- sradrng
- srasubrg
- sralvec
- srafldlvec
- Division Ring Extensions
- drgext0g
- drgextvsca
- drgext0gsca
- drgextsubrg
- drgextlsp
- drgextgsum
- Vector Spaces
- lvecdimfi
- Vector Space Dimension
- cldim
- df-dim
- dimval
- dimvalfi
- dimcl
- lvecdim0i
- lvecdim0
- lssdimle
- dimpropd
- rgmoddim
- frlmdim
- tnglvec
- tngdim
- rrxdim
- matdim
- lbslsat
- lsatdim
- drngdimgt0
- lmhmlvec2
- kerlmhm
- imlmhm
- lindsunlem
- lindsun
- lbsdiflsp0
- dimkerim
- qusdimsum
- fedgmullem1
- fedgmullem2
- fedgmul