Metamath Proof Explorer


Table of Contents - 20.3.9. Algebra

  1. Monoids Homomorphisms
    1. abliso
  2. Finitely supported group sums - misc additions
    1. gsumsubg
    2. gsumsra
    3. gsummpt2co
    4. gsummpt2d
    5. lmodvslmhm
    6. gsumvsmul1
    7. gsummptres
    8. gsummptres2
    9. gsumzresunsn
    10. gsumpart
    11. gsumhashmul
    12. xrge0tsmsd
    13. xrge0tsmsbi
    14. xrge0tsmseq
  3. Centralizers and centers - misc additions
    1. cntzun
    2. cntzsnid
    3. cntrcrng
  4. Totally ordered monoids and groups
    1. comnd
    2. cogrp
    3. df-omnd
    4. df-ogrp
    5. isomnd
    6. isogrp
    7. ogrpgrp
    8. omndmnd
    9. omndtos
    10. omndadd
    11. omndaddr
    12. omndadd2d
    13. omndadd2rd
    14. submomnd
    15. xrge0omnd
    16. omndmul2
    17. omndmul3
    18. omndmul
    19. ogrpinv0le
    20. ogrpsub
    21. ogrpaddlt
    22. ogrpaddltbi
    23. ogrpaddltrd
    24. ogrpaddltrbid
    25. ogrpsublt
    26. ogrpinv0lt
    27. ogrpinvlt
    28. gsumle
  5. The symmetric group
    1. symgfcoeu
    2. symgcom
    3. symgcom2
    4. symgcntz
    5. odpmco
    6. symgsubg
    7. pmtrprfv2
    8. pmtrcnel
    9. pmtrcnel2
    10. pmtrcnelor
  6. Transpositions
    1. pmtridf1o
    2. pmtridfv1
    3. pmtridfv2
  7. Permutation Signs
    1. psgnid
    2. psgndmfi
    3. pmtrto1cl
    4. psgnfzto1stlem
    5. fzto1stfv1
    6. fzto1st1
    7. fzto1st
    8. fzto1stinvn
    9. psgnfzto1st
  8. Permutation cycles
    1. ctocyc
    2. df-tocyc
    3. tocycval
    4. tocycfv
    5. tocycfvres1
    6. tocycfvres2
    7. cycpmfvlem
    8. cycpmfv1
    9. cycpmfv2
    10. cycpmfv3
    11. cycpmcl
    12. tocycf
    13. tocyc01
    14. cycpm2tr
    15. cycpm2cl
    16. cyc2fv1
    17. cyc2fv2
    18. trsp2cyc
    19. cycpmco2f1
    20. cycpmco2rn
    21. cycpmco2lem1
    22. cycpmco2lem2
    23. cycpmco2lem3
    24. cycpmco2lem4
    25. cycpmco2lem5
    26. cycpmco2lem6
    27. cycpmco2lem7
    28. cycpmco2
    29. cyc2fvx
    30. cycpm3cl
    31. cycpm3cl2
    32. cyc3fv1
    33. cyc3fv2
    34. cyc3fv3
    35. cyc3co2
    36. cycpmconjvlem
    37. cycpmconjv
    38. cycpmrn
    39. tocyccntz
  9. The Alternating Group
    1. evpmval
    2. cnmsgn0g
    3. evpmsubg
    4. evpmid
    5. altgnsg
    6. cyc3evpm
    7. cyc3genpmlem
    8. cyc3genpm
    9. cycpmgcl
    10. cycpmconjslem1
    11. cycpmconjslem2
    12. cycpmconjs
    13. cyc3conja
  10. Signum in an ordered monoid
    1. csgns
    2. df-sgns
    3. sgnsv
    4. sgnsval
    5. sgnsf
  11. The Archimedean property for generic ordered algebraic structures
    1. cinftm
    2. carchi
    3. df-inftm
    4. df-archi
    5. inftmrel
    6. isinftm
    7. isarchi
    8. pnfinf
    9. xrnarchi
    10. isarchi2
    11. submarchi
    12. isarchi3
    13. archirng
    14. archirngz
    15. archiexdiv
    16. archiabllem1a
    17. archiabllem1b
    18. archiabllem1
    19. archiabllem2a
    20. archiabllem2c
    21. archiabllem2b
    22. archiabllem2
    23. archiabl
  12. Semiring left modules
    1. cslmd
    2. df-slmd
    3. isslmd
    4. slmdlema
    5. lmodslmd
    6. slmdcmn
    7. slmdmnd
    8. slmdsrg
    9. slmdbn0
    10. slmdacl
    11. slmdmcl
    12. slmdsn0
    13. slmdvacl
    14. slmdass
    15. slmdvscl
    16. slmdvsdi
    17. slmdvsdir
    18. slmdvsass
    19. slmd0cl
    20. slmd1cl
    21. slmdvs1
    22. slmd0vcl
    23. slmd0vlid
    24. slmd0vrid
    25. slmd0vs
    26. slmdvs0
    27. gsumvsca1
    28. gsumvsca2
  13. Simple groups
    1. prmsimpcyc
  14. Rings - misc additions
    1. rngurd
    2. dvdschrmulg
    3. freshmansdream
    4. frobrhm
    5. ress1r
    6. dvrdir
    7. rdivmuldivd
    8. ringinvval
    9. dvrcan5
    10. subrgchr
    11. rmfsupp2
  15. Subfields
    1. primefldchr
  16. Totally ordered rings and fields
    1. corng
    2. cofld
    3. df-orng
    4. df-ofld
    5. isorng
    6. orngring
    7. orngogrp
    8. isofld
    9. orngmul
    10. orngsqr
    11. ornglmulle
    12. orngrmulle
    13. ornglmullt
    14. orngrmullt
    15. orngmullt
    16. ofldfld
    17. ofldtos
    18. orng0le1
    19. ofldlt1
    20. ofldchr
    21. suborng
    22. subofld
    23. isarchiofld
  17. Ring homomorphisms - misc additions
    1. rhmdvdsr
    2. rhmopp
    3. elrhmunit
    4. rhmdvd
    5. rhmunitinv
    6. kerunit
  18. Scalar restriction operation
    1. cresv
    2. df-resv
    3. reldmresv
    4. resvval
    5. resvid2
    6. resvval2
    7. resvsca
    8. resvlem
    9. resvlemOLD
    10. resvbas
    11. resvbasOLD
    12. resvplusg
    13. resvplusgOLD
    14. resvvsca
    15. resvvscaOLD
    16. resvmulr
    17. resvmulrOLD
    18. resv0g
    19. resv1r
    20. resvcmn
  19. The commutative ring of gaussian integers
    1. gzcrng
  20. The archimedean ordered field of real numbers
    1. reofld
    2. nn0omnd
    3. rearchi
    4. nn0archi
    5. xrge0slmod
  21. The quotient map and quotient modules
    1. qusker
    2. eqgvscpbl
    3. qusvscpbl
    4. qusscaval
    5. imaslmod
    6. quslmod
    7. quslmhm
    8. ecxpid
    9. eqg0el
    10. qsxpid
    11. qusxpid
    12. qustriv
    13. qustrivr
  22. The ring of integers modulo ` N `
    1. znfermltl
  23. Independent sets and families
    1. islinds5
    2. ellspds
    3. 0ellsp
    4. 0nellinds
    5. rspsnel
    6. rspsnid
    7. elrsp
    8. rspidlid
    9. pidlnz
    10. lbslsp
    11. lindssn
    12. lindflbs
    13. linds2eq
    14. lindfpropd
    15. lindspropd
  24. Subgroup sum / Sumset / Minkowski sum
    1. elgrplsmsn
    2. lsmsnorb
    3. lsmsnorb2
    4. elringlsm
    5. elringlsmd
    6. ringlsmss
    7. ringlsmss1
    8. ringlsmss2
    9. lsmsnpridl
    10. lsmsnidl
    11. lsmidllsp
    12. lsmidl
    13. lsmssass
    14. grplsm0l
    15. grplsmid
  25. The quotient map
    1. quslsm
    2. qusima
    3. nsgqus0
    4. nsgmgclem
    5. nsgmgc
    6. nsgqusf1olem1
    7. nsgqusf1olem2
    8. nsgqusf1olem3
    9. nsgqusf1o
  26. Ideals
    1. intlidl
    2. rhmpreimaidl
    3. kerlidl
    4. 0ringidl
    5. elrspunidl
    6. lidlincl
    7. idlinsubrg
    8. rhmimaidl
  27. Prime Ideals
    1. cprmidl
    2. df-prmidl
    3. prmidlval
    4. isprmidl
    5. prmidlnr
    6. prmidl
    7. prmidl2
    8. idlmulssprm
    9. pridln1
    10. prmidlidl
    11. prmidlssidl
    12. lidlnsg
    13. cringm4
    14. isprmidlc
    15. prmidlc
    16. 0ringprmidl
    17. prmidl0
    18. rhmpreimaprmidl
    19. qsidomlem1
    20. qsidomlem2
    21. qsidom
  28. Maximal Ideals
    1. cmxidl
    2. df-mxidl
    3. mxidlval
    4. ismxidl
    5. mxidlidl
    6. mxidlnr
    7. mxidlmax
    8. mxidln1
    9. mxidlnzr
    10. mxidlprm
    11. ssmxidllem
    12. ssmxidl
    13. krull
    14. mxidlnzrb
  29. The semiring of ideals of a ring
    1. cidlsrg
    2. df-idlsrg
    3. idlsrgstr
    4. idlsrgval
    5. idlsrgbas
    6. idlsrgplusg
    7. idlsrg0g
    8. idlsrgmulr
    9. idlsrgtset
    10. idlsrgmulrval
    11. idlsrgmulrcl
    12. idlsrgmulrss1
    13. idlsrgmulrss2
    14. idlsrgmulrssin
    15. idlsrgmnd
    16. idlsrgcmnd
  30. Prime Elements
  31. Unique factorization domains
    1. cufd
    2. df-ufd
    3. isufd
    4. rprmval
    5. isrprm
  32. Associative algebras
    1. asclmulg
  33. Univariate Polynomials
    1. fply1
    2. ply1scleq
    3. ply1chr
    4. ply1fermltl
  34. The subring algebra
    1. sra1r
    2. sraring
    3. sradrng
    4. srasubrg
    5. sralvec
    6. srafldlvec
  35. Division Ring Extensions
    1. drgext0g
    2. drgextvsca
    3. drgext0gsca
    4. drgextsubrg
    5. drgextlsp
    6. drgextgsum
  36. Vector Spaces
    1. lvecdimfi
  37. Vector Space Dimension
    1. cldim
    2. df-dim
    3. dimval
    4. dimvalfi
    5. dimcl
    6. lvecdim0i
    7. lvecdim0
    8. lssdimle
    9. dimpropd
    10. rgmoddim
    11. frlmdim
    12. tnglvec
    13. tngdim
    14. rrxdim
    15. matdim
    16. lbslsat
    17. lsatdim
    18. drngdimgt0
    19. lmhmlvec2
    20. kerlmhm
    21. imlmhm
    22. lindsunlem
    23. lindsun
    24. lbsdiflsp0
    25. dimkerim
    26. qusdimsum
    27. fedgmullem1
    28. fedgmullem2
    29. fedgmul