Metamath Proof Explorer


Theorem ofldlt1

Description: In an ordered field, the ring unit is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Hypotheses orng0le1.1 0 = ( 0g𝐹 )
orng0le1.2 1 = ( 1r𝐹 )
ofld0lt1.3 < = ( lt ‘ 𝐹 )
Assertion ofldlt1 ( 𝐹 ∈ oField → 0 < 1 )

Proof

Step Hyp Ref Expression
1 orng0le1.1 0 = ( 0g𝐹 )
2 orng0le1.2 1 = ( 1r𝐹 )
3 ofld0lt1.3 < = ( lt ‘ 𝐹 )
4 isofld ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) )
5 4 simprbi ( 𝐹 ∈ oField → 𝐹 ∈ oRing )
6 eqid ( le ‘ 𝐹 ) = ( le ‘ 𝐹 )
7 1 2 6 orng0le1 ( 𝐹 ∈ oRing → 0 ( le ‘ 𝐹 ) 1 )
8 5 7 syl ( 𝐹 ∈ oField → 0 ( le ‘ 𝐹 ) 1 )
9 ofldfld ( 𝐹 ∈ oField → 𝐹 ∈ Field )
10 isfld ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) )
11 10 simplbi ( 𝐹 ∈ Field → 𝐹 ∈ DivRing )
12 1 2 drngunz ( 𝐹 ∈ DivRing → 10 )
13 9 11 12 3syl ( 𝐹 ∈ oField → 10 )
14 13 necomd ( 𝐹 ∈ oField → 01 )
15 1 fvexi 0 ∈ V
16 2 fvexi 1 ∈ V
17 6 3 pltval ( ( 𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V ) → ( 0 < 1 ↔ ( 0 ( le ‘ 𝐹 ) 101 ) ) )
18 15 16 17 mp3an23 ( 𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 ( le ‘ 𝐹 ) 101 ) ) )
19 8 14 18 mpbir2and ( 𝐹 ∈ oField → 0 < 1 )