Step |
Hyp |
Ref |
Expression |
1 |
|
orng0le1.1 |
⊢ 0 = ( 0g ‘ 𝐹 ) |
2 |
|
orng0le1.2 |
⊢ 1 = ( 1r ‘ 𝐹 ) |
3 |
|
ofld0lt1.3 |
⊢ < = ( lt ‘ 𝐹 ) |
4 |
|
isofld |
⊢ ( 𝐹 ∈ oField ↔ ( 𝐹 ∈ Field ∧ 𝐹 ∈ oRing ) ) |
5 |
4
|
simprbi |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ oRing ) |
6 |
|
eqid |
⊢ ( le ‘ 𝐹 ) = ( le ‘ 𝐹 ) |
7 |
1 2 6
|
orng0le1 |
⊢ ( 𝐹 ∈ oRing → 0 ( le ‘ 𝐹 ) 1 ) |
8 |
5 7
|
syl |
⊢ ( 𝐹 ∈ oField → 0 ( le ‘ 𝐹 ) 1 ) |
9 |
|
ofldfld |
⊢ ( 𝐹 ∈ oField → 𝐹 ∈ Field ) |
10 |
|
isfld |
⊢ ( 𝐹 ∈ Field ↔ ( 𝐹 ∈ DivRing ∧ 𝐹 ∈ CRing ) ) |
11 |
10
|
simplbi |
⊢ ( 𝐹 ∈ Field → 𝐹 ∈ DivRing ) |
12 |
1 2
|
drngunz |
⊢ ( 𝐹 ∈ DivRing → 1 ≠ 0 ) |
13 |
9 11 12
|
3syl |
⊢ ( 𝐹 ∈ oField → 1 ≠ 0 ) |
14 |
13
|
necomd |
⊢ ( 𝐹 ∈ oField → 0 ≠ 1 ) |
15 |
1
|
fvexi |
⊢ 0 ∈ V |
16 |
2
|
fvexi |
⊢ 1 ∈ V |
17 |
6 3
|
pltval |
⊢ ( ( 𝐹 ∈ oField ∧ 0 ∈ V ∧ 1 ∈ V ) → ( 0 < 1 ↔ ( 0 ( le ‘ 𝐹 ) 1 ∧ 0 ≠ 1 ) ) ) |
18 |
15 16 17
|
mp3an23 |
⊢ ( 𝐹 ∈ oField → ( 0 < 1 ↔ ( 0 ( le ‘ 𝐹 ) 1 ∧ 0 ≠ 1 ) ) ) |
19 |
8 14 18
|
mpbir2and |
⊢ ( 𝐹 ∈ oField → 0 < 1 ) |