Metamath Proof Explorer


Theorem ofldlt1

Description: In an ordered field, the ring unit is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Hypotheses orng0le1.1
|- .0. = ( 0g ` F )
orng0le1.2
|- .1. = ( 1r ` F )
ofld0lt1.3
|- .< = ( lt ` F )
Assertion ofldlt1
|- ( F e. oField -> .0. .< .1. )

Proof

Step Hyp Ref Expression
1 orng0le1.1
 |-  .0. = ( 0g ` F )
2 orng0le1.2
 |-  .1. = ( 1r ` F )
3 ofld0lt1.3
 |-  .< = ( lt ` F )
4 isofld
 |-  ( F e. oField <-> ( F e. Field /\ F e. oRing ) )
5 4 simprbi
 |-  ( F e. oField -> F e. oRing )
6 eqid
 |-  ( le ` F ) = ( le ` F )
7 1 2 6 orng0le1
 |-  ( F e. oRing -> .0. ( le ` F ) .1. )
8 5 7 syl
 |-  ( F e. oField -> .0. ( le ` F ) .1. )
9 ofldfld
 |-  ( F e. oField -> F e. Field )
10 isfld
 |-  ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) )
11 10 simplbi
 |-  ( F e. Field -> F e. DivRing )
12 1 2 drngunz
 |-  ( F e. DivRing -> .1. =/= .0. )
13 9 11 12 3syl
 |-  ( F e. oField -> .1. =/= .0. )
14 13 necomd
 |-  ( F e. oField -> .0. =/= .1. )
15 1 fvexi
 |-  .0. e. _V
16 2 fvexi
 |-  .1. e. _V
17 6 3 pltval
 |-  ( ( F e. oField /\ .0. e. _V /\ .1. e. _V ) -> ( .0. .< .1. <-> ( .0. ( le ` F ) .1. /\ .0. =/= .1. ) ) )
18 15 16 17 mp3an23
 |-  ( F e. oField -> ( .0. .< .1. <-> ( .0. ( le ` F ) .1. /\ .0. =/= .1. ) ) )
19 8 14 18 mpbir2and
 |-  ( F e. oField -> .0. .< .1. )