Step |
Hyp |
Ref |
Expression |
1 |
|
retopn |
⊢ ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld ) |
2 |
1
|
oveq1i |
⊢ ( ( topGen ‘ ran (,) ) ↾t ℚ ) = ( ( TopOpen ‘ ℝfld ) ↾t ℚ ) |
3 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
4 |
3
|
oveq1i |
⊢ ( ℝfld ↾s ℚ ) = ( ( ℂfld ↾s ℝ ) ↾s ℚ ) |
5 |
|
reex |
⊢ ℝ ∈ V |
6 |
|
qssre |
⊢ ℚ ⊆ ℝ |
7 |
|
ressabs |
⊢ ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ( ℂfld ↾s ℝ ) ↾s ℚ ) = ( ℂfld ↾s ℚ ) ) |
8 |
5 6 7
|
mp2an |
⊢ ( ( ℂfld ↾s ℝ ) ↾s ℚ ) = ( ℂfld ↾s ℚ ) |
9 |
4 8
|
eqtr2i |
⊢ ( ℂfld ↾s ℚ ) = ( ℝfld ↾s ℚ ) |
10 |
9 1
|
resstopn |
⊢ ( ( topGen ‘ ran (,) ) ↾t ℚ ) = ( TopOpen ‘ ( ℂfld ↾s ℚ ) ) |
11 |
2 10
|
eqtr3i |
⊢ ( ( TopOpen ‘ ℝfld ) ↾t ℚ ) = ( TopOpen ‘ ( ℂfld ↾s ℚ ) ) |