Metamath Proof Explorer


Theorem qqtopn

Description: The topology of the field of the rational numbers. (Contributed by Thierry Arnoux, 29-Aug-2020)

Ref Expression
Assertion qqtopn ( ( TopOpen ‘ ℝfld ) ↾t ℚ ) = ( TopOpen ‘ ( ℂflds ℚ ) )

Proof

Step Hyp Ref Expression
1 retopn ( topGen ‘ ran (,) ) = ( TopOpen ‘ ℝfld )
2 1 oveq1i ( ( topGen ‘ ran (,) ) ↾t ℚ ) = ( ( TopOpen ‘ ℝfld ) ↾t ℚ )
3 df-refld fld = ( ℂflds ℝ )
4 3 oveq1i ( ℝflds ℚ ) = ( ( ℂflds ℝ ) ↾s ℚ )
5 reex ℝ ∈ V
6 qssre ℚ ⊆ ℝ
7 ressabs ( ( ℝ ∈ V ∧ ℚ ⊆ ℝ ) → ( ( ℂflds ℝ ) ↾s ℚ ) = ( ℂflds ℚ ) )
8 5 6 7 mp2an ( ( ℂflds ℝ ) ↾s ℚ ) = ( ℂflds ℚ )
9 4 8 eqtr2i ( ℂflds ℚ ) = ( ℝflds ℚ )
10 9 1 resstopn ( ( topGen ‘ ran (,) ) ↾t ℚ ) = ( TopOpen ‘ ( ℂflds ℚ ) )
11 2 10 eqtr3i ( ( TopOpen ‘ ℝfld ) ↾t ℚ ) = ( TopOpen ‘ ( ℂflds ℚ ) )