Step |
Hyp |
Ref |
Expression |
1 |
|
rrhfe.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) |
3 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
4 |
|
eqid |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( ℤMod ‘ 𝑅 ) = ( ℤMod ‘ 𝑅 ) |
6 |
|
rrextdrg |
⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ DivRing ) |
7 |
|
rrextnrg |
⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing ) |
8 |
5
|
rrextnlm |
⊢ ( 𝑅 ∈ ℝExt → ( ℤMod ‘ 𝑅 ) ∈ NrmMod ) |
9 |
|
rrextchr |
⊢ ( 𝑅 ∈ ℝExt → ( chr ‘ 𝑅 ) = 0 ) |
10 |
|
rrextcusp |
⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ CUnifSp ) |
11 |
1 2
|
rrextust |
⊢ ( 𝑅 ∈ ℝExt → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ) ) |
12 |
2 3 1 4 5 6 7 8 9 10 11
|
rrhf |
⊢ ( 𝑅 ∈ ℝExt → ( ℝHom ‘ 𝑅 ) : ℝ ⟶ 𝐵 ) |