| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrhcne.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 2 |  | rrhcne.k | ⊢ 𝐾  =  ( TopOpen ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) )  =  ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( ℤMod ‘ 𝑅 )  =  ( ℤMod ‘ 𝑅 ) | 
						
							| 6 |  | rrextdrg | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  DivRing ) | 
						
							| 7 |  | rrextnrg | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  NrmRing ) | 
						
							| 8 | 5 | rrextnlm | ⊢ ( 𝑅  ∈   ℝExt   →  ( ℤMod ‘ 𝑅 )  ∈  NrmMod ) | 
						
							| 9 |  | rrextchr | ⊢ ( 𝑅  ∈   ℝExt   →  ( chr ‘ 𝑅 )  =  0 ) | 
						
							| 10 |  | rrextcusp | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  CUnifSp ) | 
						
							| 11 | 4 3 | rrextust | ⊢ ( 𝑅  ∈   ℝExt   →  ( UnifSt ‘ 𝑅 )  =  ( metUnif ‘ ( ( dist ‘ 𝑅 )  ↾  ( ( Base ‘ 𝑅 )  ×  ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 12 | 3 1 4 2 5 6 7 8 9 10 11 | rrhcn | ⊢ ( 𝑅  ∈   ℝExt   →  ( ℝHom ‘ 𝑅 )  ∈  ( 𝐽  Cn  𝐾 ) ) |