| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrhcne.j |  |-  J = ( topGen ` ran (,) ) | 
						
							| 2 |  | rrhcne.k |  |-  K = ( TopOpen ` R ) | 
						
							| 3 |  | eqid |  |-  ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 5 |  | eqid |  |-  ( ZMod ` R ) = ( ZMod ` R ) | 
						
							| 6 |  | rrextdrg |  |-  ( R e. RRExt -> R e. DivRing ) | 
						
							| 7 |  | rrextnrg |  |-  ( R e. RRExt -> R e. NrmRing ) | 
						
							| 8 | 5 | rrextnlm |  |-  ( R e. RRExt -> ( ZMod ` R ) e. NrmMod ) | 
						
							| 9 |  | rrextchr |  |-  ( R e. RRExt -> ( chr ` R ) = 0 ) | 
						
							| 10 |  | rrextcusp |  |-  ( R e. RRExt -> R e. CUnifSp ) | 
						
							| 11 | 4 3 | rrextust |  |-  ( R e. RRExt -> ( UnifSt ` R ) = ( metUnif ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) | 
						
							| 12 | 3 1 4 2 5 6 7 8 9 10 11 | rrhcn |  |-  ( R e. RRExt -> ( RRHom ` R ) e. ( J Cn K ) ) |